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I was born in a crossfire hurricane ....

It's all right now (in fact it's a gas).

-- The Rolling Stones
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ABSTRACT

Meteorological phenomema known as microbursts can produce

abrupt changes in wind direction and/or speed over a very

short distance in the atmosphere. These changes in flow

chararteristics have been labeled "wind shear." Because of

its adverse effects on aerodynamic lift, wind shear poses

its most immediate threat to flight operations at low

altitudes. The number of recent commercial aircraft

accidents attributed to wind shear has necessitated a better

understanding of how energy is transferred to an aircraft

from wind-shear turbulence. Isotropic turbulence here

serves as the basis of comparison for the anisotropic

turbulence which exists in a low-altitude wind shear. The

related question of how isotropic turbulence "scales" in a

wind shear is addressed from the perspective of power

spectral density (psd). The role of the psd in related

Monte Carlo simulations is also considered.
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§ 1.1 INTRODUCTION TO THE PHENOMENON

Meteorological events such as thunderstorms and

unstable frontal systems have long been considered dangerous

from the perspective of aviation safety. Investigations

into the alarming number of recent aircraft accidents

involving thunderstorms have revealed the meteorological

culprit - a strong, turbulent blast of air directed toward

the ground - which has come to be known as a "downburst."

The mechanism by which the downburst is created is both

a complex and sometimes violent one. From the investigation

of the airliner crash at JFK Airport in 1975, much was

learned about the convective atmospheric dynamics which

causes the downburst. It was postulated by Fujita I that a

violent atmospheric disturbance may occur when a moist,

upper air fract drops precipitation through a relatively dry

layer below it. As the precipitation evaporates, the dry

layer cools. Consequently, a stream of dense cold air

suddenly replaces the ground-heated, low-altitude air.

Furthermore, as the resulting downdraft shears through the

existing horizontal flow and plunges toward the ground ( cf.

Figure I ), turbulence is invariably generated. The

downdraft eventually impacts the ground, and spreads out

both horizontally and radially thus creating even more

turbulence. During the evolution of the downburst

( sometimes lasting up to 15 minutes as noted in Figure 2 )_

the dimensions of the all-important, low-altitude phase may

be on the order of 15-30 meters high with a radial spread of

2.5 kilometers 3. Realization of the phenomenon's relatively

- 2 -
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Figure 1 : Atmosoheric Turbulence Generation as a
Result of the Downburst Phenomenon
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small meteorological size serves as the motivation for the

term "microburst" to be used.

Typically, the distinguishing characteristics of the

microburst are winds which are both localized and highly

variable as can be seen from Figures 3 and 4_ These abrupt

changes in wind speed and/or direction over a short

atmospheric distance are referred to in the literature as

"wind shear." For the purposes of this study, wind shear

will be defined as a flow which has a spatially nonconstant,

mean velocity profile. It is obvious that flight through a

"wind shear-infected area" will tax both pilot and aircraft

since velocity gradients may drop airspeed to critically low

levels. In summary, wind shear poses an immediate threat to

flight operations at low altitudes due to its adverse

effects on aerodynamic lift.

The scenerio of microburst penetration by an aircraft

in the landing mode is shown in Figure 5. First, the

aircraft encounters a strong head wind. Although turbulence

typically accompanies the increasing airspeed, pilot

confidence is high during this phase since aircraft

performance increases with the additional aerodynamic lift.

Because the intent is to land the aircraft, the pilot

intuitively trims the aircraft through the remnants of the

downdraft. Finally, the head wind suddenly becomes a strong

tail wind. At this point, performance is seriously degraded

since the distinct head-to-tail wind swing has reduced

airspeed by as much as 50 knots_ Such a reduction may be

enough to lose flying speed. The result may be a fatal

crash ( see Figure 6 )9

- 5 -
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Figure 3 : Dust Ring of a Typical Microburst

Figure q : Outflow Vortex Circulation in a Microburst
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In the last I0 years, 575 people have been killed in

commercial aircraft accidents in the United States due to

the wind shear phenomenon_ Likewise, wind shear-induced

accidents have also been reported in Great Britain, Germany,

France, Italy, Australia, and Japan. Consequently, an

enhanced fundamental understanding of microbursts, wind

shear, and low-level atmospheric turbulence is a

high-priority research issue.

§ 1.2 RELATED RESEARCH

Flight science authorities agree that the "solution" to

the wind shear "problem" is multi-faceted_ The related

research programs of NASA and FAA primarily focus on three

elements: 1) hazard characterization, 2) sensor

technology, and 3) flight management and operations.

Hazard characterization is the study of the physics of

the microburst phenomenon. Inherent within this phase of

the research effort is analysis of aircraft aerodynamics in

wind shears and heavy rain. It follows that wind shear

velocity profiles, rainfall studies, and turbulence models

are important contributions from this research area.

The sensor technology component of the research effort

deals with the prediction and detection of potentially

dangerous meteorological events. This section subdivides

into airport-fixed and airborne ( _ _ ) sensor

technologies. Next Generation Radar Fields ( NEXRAD ) are

presently being investigated by NOAA, FAA, and USAF for

future use as airport radars. Technical and economical

- 9 -
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difficulties have slowed progress in the ground-based sensor

implementation. The other detection device is the _ _,

look-ahead sensor. This onboard computer system is being

devised to scan the forward atmospheric environment,

evaluate a "hazard index," and annunciate a warning to the

pilot in a time period adequate to ensure either avoidance

or escape of the threat. Look-ahead sensor technology is

beyond state-of-the-art, and is not expected to be

operational until the mid-1990's 5.

The third component of wind shear research is flight

management. Simply put, this phase concentrates on

informing the pilot on how to get out of the wind shear

encounter subject to aircraft performance constraints.

An important element of flight management studies is

flight simulation. Simulators allow pilots to experience

threatening wind shears in a controlled environment with

intent to better prepare them for potential real-life

events. Realistic wind shear representations in flight

simulators are practical and economical, and can help crews

to coordinate their efforts in critical situations. Realism

in the simulation of flight through hazardous atmospheric

environments has improved with the introduction of lateral

and vertical winds, as well as vortex 3 and turbulence

influences_ The focus of the present work is the

characterization of wind-shear turbulence. Interestingly

enough, the analysis that follows may directly apply to each

of the three research branches described above - a fact

expanded upon in Chapter 4.

- I0 -
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§ 1.3 PRESENT RESEARCH OBJECTIVES

There are three principle objectives of the present

research:

1) to model the statistical characteristics of the

turbulence associated with a low-altitude,

sheared mean flow,

2) to study the effect of these characteristics on

aircraft response, and

3) to consider a method of simulating the modelled

turbulence.

All of these issues will herein be addressed from the

perspective of power spectal density (psd) - a popular

frequency domain statistic of turbulence.

- 11 -
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FUNDAMENTALS OF RANDOM PROCESSES
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§ 2.1 RANDON PROCESSES AND THEIR CLASSIFICATIONS

Physical phenomena whose time-dependence cannot be

described by deterministic mathematical relationships are

known as stochastic or random processes. Atmospheric

turbulence, with its constantly changing pressure and

velocities, is an example of a random process.

Consequently, random processes must be defined in

probabilistic terms and statistical averages.

Stochastic processes are generally classified as either

stationary or nonstationary. A stationary random process is

one whose statistics are independent of time, while

nonstationarity implies time-dependent statistics. M pr£or£

classification of random processes is often based upon the

physics of the event in question. For example, the

vibration environment typical of an aircraft in

constant-speed, constant-altitude flight through a tame

atmosphere would most likely be a stationary one; whereas,

the vibration levels of booster vehicle components during

the ascent the rocket would certainly be nonstationary due

9
to the time-dependent accelerations and pressures

encountered. To quantitatively describe such processes, a

precise and unambiguous mathematical vocabulary must first

be established.

§ _._ DEFINITIONS FOR STATIONARY RANDOP1 PROCESSES

The definitive description of a random variable is its

probability density function ( pdf ). The primary random

- 13 -
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variables in a turbulent fluid are the ( space- and )

time-dependent velocity and pressure. Clearly, if an

atmospheric experiment is repeated under identical

conditions, different values of, say, pressure would arise

each time. A graphical representation of such a random

variable data set is depicted in Figure 7. Each record is

called a sample, and the collection of time histories

necessary to totally define the random process is called an

ensemble. At a particular time, say ti, the number of times

the entire ensemble takes on values between some { _(t ) }
£

and { _(tl) + A_(tl) } defines a pdf as AN _ 0 ( see Figure

8 ). For practical purposes, it is assumed that the pdf

formed from a large but finite number of time histories

adequately represents the random variable.

An alternative to constructing a pdf is to define

statistical averaqes which are also known as statistical

moments. For a fixed point in space, the shape of the

probability density function can be typically defined by its
I0

various-order moments given as

cO

Mn -= < _" > -= I 04" P(_) d04 (2.1)

-cO

where M is the moment of order n, and P(_) is the pdf of
n

the random varible N.

be

The first two statistical moments of P(_) are found to

- 14 -
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co

M - < 04 > -_- _ _= 04 P(_) d_ (2.2)

--00

and

I

I
I

co

-- IM _= < _z > m _Z m _Z P(_) d_ (2.3)
2

-CO

I

I

I

The first statistical moment, called the mean or expected

value, defines the "centroid" of the pdf. The second moment

is the expected value of _z, and is commonly referred to as

the mean squared value of _ Statistical moments, if taken

about the mean value, are known as central moments, and are

defined as follows:

)n p(_) d04 (2.4)

The first central moment can be considered as an "adjusted"

centroid as indicated below:
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< _ --'I_T- > E

co

( 04 _-_- )P(04)

-CO

CO CO

-CO - CO

P(04) d_

= -W- - -_- = 0

Evaluation of the second central moment yields:

< ( 04 _-_- )z > _

co

( 04 --W- )" P(04)

-CO

m

oo co co

042 P(04) d_ - 2-_- 04 P(04) d_ + -_- P(04) d_

--¢0 -CO -CO

2

042 _ -_--

2

The quantity 042 _-_-- is known as the variance or intensity

of 04 and is commonly denoted by z The variance serves as

- 18 -
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a measure of the spread of the data about the mean.

The next two central moments, in conjunction with the

mean and the variance, give a good description of the

probability density function of the random variable. The

third central moment, called the skewness, is denoted ss

It defines the degree of asymmetry about the expected value.

The kurtosis or flatness, k 4 , is the fourth central

moment, and it describes the amount of information contained

in the tails of the pdf. It is important to note that the

higher-order central moments ( e.g., skewness and kurtosis )

become important when the random process significantly

deviates from the standard Gaussian form.

Recall that the Gaussian probability density function is

P(_) = exp (2.5)

c_ _ 2 _ z

Without doubt, the Gaussian probability density function is the

most widely used pdf in analyses and simulations of atmospheric

velocity fluctuations. Other common pdfs that are used include:

the modified Gaussian, the Bessel, and the modified Bessel. Each

of these forms will be considered in more detail when turbulence

simulation concepts are addressed in Chapter 4. At present, it is

important to note that the Gaussian pdf demands that the odd-order

moments ( skewness, superskewness - the fifth-order moment, etc. )

- 19 -
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vanish. Hence, the Gaussian probability density function is

necessarily symmetric about -_-- as is shown in Figure 9.

Unfortunately, real hydrodynamic turbulence typically has a

skewed, non-Gaussian pdf ( see Figure I0 ), thereby making

Gaussian turbulence simulations questionable in terms of

fidelity_ 1 Again, this topic will be considered in Chapter

4.

If the statistical properties of the random variable do

not depend on spatial position, the process is said to be

homoqeneous. For the purposes of this study, homogeneiety

infers that the statistical representation of low-altitude

turbulence is independent of both elevation and geographic
12

location. This is most assuredly not the case. The

present analysis will deal primarily with inhomogeneous

turbulence.

Often, an "infinite" number of time records of a single

random process is not available to meet the ensemble average

criteria. If a time average for a discrete number ( one as

a minimum ) of records results in the same statistics as

that from an ensemble average, the process is said to be

ergodic. It should be emphasized that, in the classical

sense, the assumption of ergodicity is valid only for a

stationary process, and that it allows the total random

process to be completely represented by a single time

record. Due to experimental and econmonical limitations,

the concept of ergodicity is frequently invoked in random

process analyses. Consequently, the aforementioned

statistical moments may then be written as follows:

- 20 -
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M =_ <_ >m-_ -=

T

1

lira _m I 04(x,.t) dt
T_ _ _

-T

(2.6)

< ( _ --g-)" > _= o" m

T

1

tim I ( 04 _-_)2 dt (2.7)
T_ _ 2T

-T

< ( S --_-)" > _= s" m

T

1

tim I ( 04 _-]_-)s dt (2.8)
T_ _ 2T

-T

< ( s --_-)" > _= k4 =

T

1

tim I ( 04 _-_-)4 dt , (2.9)
T_ _ 2T

-T

where T is "sufficiently" large. Taking into account the

practicality of a time record, Equations (2.6) - (2.9) may

be rewritten as follows:

T

1

M =_ < U4 > _= -_-- = t_m I _(x,t) dt (2.10)
T -_ CO T

o
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T

1
= tim ( 04 _--_-)m dt (2.11)

T_ T

o

T

1

ss = tim _ ( _ --_--)" dt (2.12)
T-_O0 T

o

T

1

k4 = lira I ( 04 _-_--)4 dt (2.13)
T_ T

o

§ 2.3 THE AUTOCORRELATION FUNCTION

The correlation function is very useful in signal

analysis. When properly interpreted, it serves as a measure

of the degree of predictability of the random signal at some

future time, t+r, based on the knowledge of a signal at

time, t. The autocorrelation function requires only a
13

single signal, and is defined as
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Cww(X,T) -_--< 04(x,t) _(x,t+T) >-

1

T

T

- -- _ _(x,t) 0_(x,t+T) dt.

o

(2.14)

The autocorrelation function may also be considered

from the perspective of scalinq effects. One scaling effect

of the autocorrelation is evident since the autocorrelation

function takes on the value of the variance at r = 0 ( i.e.,

Cww(T = 0) = _" ) since

T

Cww(X,T=0 ) -- 0_z(x,t) dt _= _ (x)
T " "

o

Should the autocorrelation be used to analyze velocity

fluctuations in a turbulent flow field, the variance

( portrayed on the ordinate axis of Figure Ii ) would

correspond to a velocity scaling effect. Note that this

form of scaling is dependent on the signal itself, and is

accordingly a "natural" scaling effect.

A normalized correlation function, defined as

- 25 -



I
I

I

I
I

I
I
i C ( _" ) R ( "r )

I

!
_ T l"

I
I

I
I

I
I

I

I
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c(x,T) c(x,r)

R(x,T) - = (2.15)

C(x,r=0)

is in essence an ordinate scalinq of the autocorrelation

function with R(x,T) S 1 and R(X,T = 0) = 1 as a result of

the Schwartz Inequality. Abscissa scaling may be defined by

co

A(X) m I R(x,r) dr

o

, (2.16)

where A is known as the inteqral scale ( which may be

graphically interpreted in Figure 12 ). For a turbulent

velocity correlation, A is referred to as a length scale as

a result of unit analysis of the integral of Equation

(2.16). Unlike the velocity scaling effect, the length

scale is quite artificial and subjective, i.e., since no

absolute length scale exists in turbulence, length metrics

must always be defined by the analyst in order to quantify a

certain aspect of the study. Consequently, a stationary

random process may then be more appropriately defined as one

whose scaling effects are time invariant while

nonstationarity implies time-dependent scaling effects.
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§ 2.4- POWER SPECTRAL DENSITY

Another important tool in random process analysis is

power spectral density ( psd ). The power spectral density

function provides information on the frequency content of a

random ( or deterministic ) process. Mathematically, the

psd of a random process is the Fourier transform of an

autocorrelation function - a relation known as the

Wiener-Khintchine theorem for aperiodic functions with

finite energy 14. Loosely stated, the information provided by

the autocorrelation function in the time-lag domain is

"mapped" into the frequency domain. The transform pair for

an inhomogeneous random process consists of the following:

00

,} (X,o.)) = ; C(X,T) e

-00

I L _T

dr (2.17)

and

c(x,T) -

00

1 I _ (X,_) e

--L_T

cko (2.18)

Evaluation of Equation (2.18) at T = 0 gives
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C(x,T = O) -

CO

1 _ _ (x,_o) d_
2nr ~

(2.19)

which is defined in electrical vernacular as the "average

power" - hence, the "power" of power spectral density.

determine the total power in a frequency band _ S _ S
i 2

it follows from Equation (2.19) that

To

Power 1
Total

sand 2_

0_
2

f°
i

(x,_) d_ (2.20)

The power spectral density has other noteworthy

characteristics: it is an even-valued, real function of

15
with non-negative average power, and it accordingly

contains no phase information.

§ 2.5 NONSTATIONARY RANDOM PROCESS THEORY

The concept of a nonstationary process is a negative

and highly nondeterministic one. As stated before, a

nonstationary random process is one whose statistics vary

with time. Much of the previous research done on stationary

processes does not strictly apply to a process with
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time-varying characteristics. Nevertheless, engineers have

knowingly applied stationary process theory to nonstationary

signals. It is in this statement that the justification for

studying nonstationarity lies. There simply exists too much

data which clearly demonstrates nonstationary behavior for

it to be overlooked. Consequently, the base knowledge of

nonstationary random processes has been growing in recent

years.

An objective of this study is to make a nonstationary

random process look as much like a stationary one as

possible. The autocorrelation function of Equation (2.14)

for a nonstationary process now takes the time-dependent

form:

C(t,T) = < _(tl) _(t2) > , (2.21)

where t = (t + t )/2 and r = t -t Note that the
i 2 2 l

space-dependent autocorrelation becomes time-dependent when

the analysis is of turbulence measured while translating

through a nonhomogeneous medium ( cf. Equations (2.14) and

(2.21)).

As before, the autocorrelation function can be

considered in terms of scaling effects. The difference here

is that the nonstationary autocorrelation has time-dependent

ordinate and abscissa scaling effects. Consequently, the

integral scale and variance - the primary statistics in

turbulence scaling - are time-variant.

- 31 -



I

I
I

I

I
I
I

I
I

I

I
I
i
I

I
I

I

I

The most commonly used correlation function for

nonstatlonary random process analysis is the

unlformly-modulated type,

c(t,T) = o'(t) R(T) , (2.22)

where _z(t) is the time-varying "modulator." Implicit

within this correlation form is the constraint imposed upon

the integral scale - that of time-invariance.

In recent studies, 16'17 a more general form has been

recommended to incorporate both variance and length

time-dependent scaling effects• namely

c(t,T) = n R(_T) • (2.23)

where n = n(t) m Gz(t) and _ = _(t) E I/A(t)

The time-dependent scaling of the autocorrelation

function may be better understood by considering it to be

"self-preserving" with time. If the autocorrelation evolves

in a self-preserving manner, its geometric shape distorts

due to the scaling effects• but its algebraic form in r is

- 32 -
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retained ( e.g., parabolas become scaled parabolas as time

evolves ). Figure 13 illustrates the self-preserving

behavior of a time-dependent correlation function. It

should be noted that the assumption of self-preservation is

simply a mathematical contrivance with its related geometric

analog being the affine transformation. 18'19 The

application of the self-preservation assumption to the decay

of atmospheric turbulence will be considered in more detail

in Chapter 3.
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CHAPTER 3

TURBULENCE MODELLING
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§ 3.i TURBULENT GUST ENVIRONMENT

Random excitation of an airframe by atmospheric

turbulence has long been a major concern of the aviation

community. Turbulence, as defined by Hinze_ 0 is "an

irregular condition of flow in which various quantities

( e.g. velocity and pressure ) show a random variation with

time and space, so that statistically distinct average

values can be discerned." For the purposes of this

analysis, turbulence will be defined as a random,

fluctuating component which is linearly superimposed upon a

deterministic mean. In general, an aircraft is exposed to

the turbulent gust environment shown in Figure 14.

Turbulence velocity components u(x,t), v(x,t), and w(x,t)

are known as the side, fore, and down gusts, respectively.

Turbulent down gusts and their role in a wind shear will be

the focus of this study; the turbulence of concern is

therefore one-dimensional in nature as shown in Figure 15.

The more realistic, and accordingly more complex,

two-dimensional turbulence field is shown in Figure 16 for

comparison.

§ 3.2 MATHEMATICAL REPRESENTATIONg OF" TURBULENCE

In order to model the exceedingly complex nature of

low-level atmospheric turbulence, the "domain" of possible

mathematical representations of turbulence should be

considered. The lower bound in the mathematical hierarchy

is isotropic turbulence. Isotropy requires turbulence

- 36 -
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Figure 15 : One-Dimensional Turbulent Downwash Field
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Figure 16 : Two-Dimensional Turbulent Downwash Field
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quantities to be unaltered by rotation and reflection of the

defining coordinate system. Isotropic turbulence therefore

has statistical parameters which scale the same way in all

spatial directions. This type of turbulence, although

mathematically pleasing, is purely hypothetical in a global

sense. Nonetheless, it, like its analog in solid mechanics

( material isotropy ), is of considerable value. Often, the

difference between results based upon the assumption of

isotropy and actual results is sufficiently small, thereby

making isotropy-based assumptions acceptable for first

estimations.

Anisotropic turbulence is that which does not fit the

definition of isotropy. This brand of turbulence is much

more difficult to mathematically represent. As shown in

Figures 17(a) and 17(b), gradients in a turbulent field do

not meet the criteria which define isotropy. Therefore,

the turbulence associated with both microburst and

low-altitude wind shear phenomena is undeniably anisotropic.

One of the simplest mathematical forms of anisotropy is

axisymmetric turbulence. It is characterized by a tendency

for preferred scaling in one prescribed spatial direction

( known as a "preferred direction" ). This same basic

concept can be applied to the turbulence associated with a

microburst. In this case, the anisotropy is the result of

the microburst's downward blast upon the nearby ground.

Consequently, the mathematical representation chosen to

model the flow peculiar to a microburst - the axisymmetric

type - serves as a "middle ground" of sorts with the

extremes being both the intimidating complexity of full,

probabilistic anisotropy and the unrealistic character of

- 40 -
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isotropy.

The kinematics of both isotropic and axisymmetric

turbulence has been firmly established by such researchers

as H.P. Robertson_ 1 and George Batchelor_ 2 Recall that

axisymmetric turbulence, unlike the global symmetry of

isotropic turbulence, has symmetry only about a defined

direction. The average value of any function of velocities

and of their derivatives is invariant under arbitrary

rotations about an axis in the preferred direction. It also

requires invariance of these functions with respect to

reflections in planes through the given direction. H.P.

Robertson's 21 inspired application of invariant theory to

the kinematical and dynamical aspects of isotropic

turbulence naturally led to a similar analysis for

axisymmetric turbulence. ( A complete summary of invariant

theory and its role in the correlation functions may be

found in Appendix A. )

§ 3.3 ANISOTROPY FOR FLIGHT SIMULATION

It follows from Appendix A that the two-point velocity

correlation for axisymmetric ( anisotropic ) turbulence is

C (r,t) _= Ar r + B6. + CA k + D( k. r + k r )
Lj L j _j L j L j j

(3.1)

The functions A,B,C, and D are arbitrary scalar functions of

the invariants peculiar to axisymmetry, viz.
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A = A (r.r, k.r, t)

B = B (r.r, k.r, t)

C = C (r.r, k.r, t)

(3.2)

D = D (r.r, k.r, t)

Now consider the geometry of the approach and departure

phases of aircraft flight depicted in Figure 18. Typically

the glide-slope path angle, _ , is quite small for large

aircraft, namely

m,:, = o ( 3" 5" ) (3.3)

Consequently, the invariant k.r is an important quantity in

this particular study. It is defined by

k (34)

and
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(3s)

The following truncated Taylor series expansion in "k.r"

illustrates the relatively weak dependence of the arbitrary

scalar functions on the the k.r invariant:

A (r.r, k.r, t) =_ A (r.r, 0, t) +

A

k.r

a (×.r) " "

B (r.r, k.r, t) _--_B (r.r, 0, t) +

C (r.r, k.r, t) _--_C (r.r, O, t) +

a B

k.r

(k. r) ~ ~

C

k.r

a (k. r) "

(3.6)

D (r.r, k.r, t) =_ D (r.r, 0, t) +

D

a (x.r)
k.r
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and, for the small-angled glide-slope geometry of concern, the

functional dependencies of Equation (3.2) become

A _ A (r.r, 0 ,t)

B _ B (r.r, 0 ,t)

C _ C (r.r, 0 ,t)

D _ D (r,r, 0 ,t)

(3.7)

Since it has been shown in Appendix A that the functional

dependencies of the scalar functions A, B, and C are even

in both "r" and "k. r" while D is an odd function of

"k.r," it follows that D = 0 ( see Figure 19 ). Thus, the

two-point velocity correlation for anisotropic turbulence of

Equation (3.1) can be written as

--- = _ j i.j L jC j/r,t) A r r + B 6 + C k k (3 8)

Now recall the geometry of the low-altitude wind shear
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encounter depicted in Figure 18. Due to the small-angled

descent or ascent, it follows that the aircraft senses only

a "small" amount of anisotropy in a necessarily large amount

present along the flight path Hence, Equation (3.8) may be

considered as

C = I + A.. (3.9)
_j _j _j

where

Isotropic 1

I m Turbulence m A r r + B 6 (3.10)
_J Tensor L J £J

and

Anisotropic I

A m Turbulence _ C k k (3.11)
_J Tensor t j

From the theory of isotropic turbulenceT09 the arbitrary

functions "A" and "B" are found to be
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z
=(f-g)

r 2

(3.12)

and

I B = mg (3.13)

i

!
I

I

I
I

with "f" and "g" being the longitudinal and transverse

correlation functions, respectively, for isotropic

turbulence. ( See Appendix B for the derivation of these

expressions from standard grid-induced turbulence

experiments. )

Now that the invariant functions have been determined

for the isotropic portion of Equation (3.9), the anisotropic

part can be considered. As proven in Appendix C, the

divergence of the correlation tensor, C.., yields the
22 _J

following:
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4A
r_A

+

r 1 _B D _ B
i

r 8 r r2 _D +

D + = 0

8 r r aD

(3.14)

and

1 _ B

r ,_D

D

r + 4D = 0 ,

r

(3.15)

where D is defined from k,r =_ Dr The aforementioned

expressions for "A" and "B" ( with D = 0 ) identically

satisfy Equation (3.14), while (3.15) reduces to
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_C
_ 0 (3.16)

r

An approximation for the arbitrary function "C" which
23

satisfies Equation (3.16) is

c = a Irl+ b , (3.17)

C

where - a = _)(_) = ©( small value ). Theory demands
r

that "a" and "b" are time-dependent parameters which define

the anisotropy. Consequently, Equation (3.8) becomes

I f - g

I

I
I

I

I

I

(3.18)

From Equation (3.18), the turbulence component of interest

- the downwash autocorrelation - results:
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C = (_r)ZA + B + C =_ B + C
sS

or

i Ca s _ Zg + ajri + b

i
I

I

I
I
I
!

I

I
!

I
I

From Equations (3.9) and (3.20), it follows that the

two-point velocity correlation takes the general form

S S CORRELAT ION CORRELAT ION

where

{ZSOTROPIG

CORRELATION

and {ANISOTROPIG

CORRELATION = aIri ÷ b
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The contributions of isotropy and anistropy to the total

autocorrelation function are shown in Figure 20. It is

important to note that the same autocorrelation for strictly

isotropic turbulence ( cf. Equation (3.19) ) is C = Zg
SS

Evaluations of the other relevant correlations for the

"small anisotropy" turbulence model are shown in Table I.

Since Table 1 indicates that the longitudinal and transverse

autocorrelations for "small anisotropy" are the same as

those provided by isotropic theory, the present turbulence

model may also be referred to as a "transverse isotropy"

model.
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Figure 20 : Isotropic and Anisotropic Contributions to

the Downwash Autocorrelation Function

F



I

I
I

i

I
I

I

!
I

i

I
I
I

Table 1 • Important Two-point Correlation Functions for the

Modelled Anisotropic Turbulence

Type of
Correlation

Modelled Anisotropic

Turbulence Correlation

Longitudinal -
Longitudinal

Transverse -
Transverse

Vertical -
Vertical

Longitudinal -
Vertical

C

C
2Z

C
gB

C
hl

0 _ 2= <UU > _ f

0

= <vv > _ 2f

#

= <WW > =_ ag + alrl + b

0

= <uw > =~ _ 2(f_g)

,

I
I

I

I

where < uu' > = < u(x) u(x+r) >
N
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§ 3.4- DYNAMICAL IMPLICATIONS OF THE NAVIER-STOKEB EQUATION

Knowledge of the sheared mean-wind/ turbulence

interplay requires that the fluid's governing equation - the

Navier-Stokes equation - be considered. The full

Navier-Stokes equation is

d U @ P 82 UL

p = pg.- +
d t L _ x a x _ x

j J

(3.23)

where p is the fluid density, p the pressure, and _ the

viscosity coefficient. The Navier-Stokes equation for a

steady-state, high Reynolds number, turbulent flow with body

and pressure forces neglected is

a (u_u m )

X

m

0 (3.24)

The assumptions made in arriving at Equation (3.24) will now

be considered.
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The steady-state turbulence assumption is common one.

Its genesis is the Taylor-von K_rm_n Hypothesis 24 whereby

the turbulent gust field is considered "frozen" with respect

to time variations. In other words, as the aircraft rapidly

translates through the turbulent eddies, the effects of

turbulence variation with time is negligible over the range

of space in consideration.

Neglected viscosity is a direct result of the high

Reynolds number hypothesis. Inherent within this

idealization is the common assumption that large-scale

interactions, which are predominantly responsible for

momentum transport, are unaffected by the fluid viscosity.

In terms of sources and sinks, the high Reynolds number

hypothesis implies that the streamlines emanating from the

source are not significantly altered by the presence of the

sink - the fluid viscosity.

Ignoring pressure is acceptable in the case of

isotropic turbulence since the pressure-velocity correlation

is necessarily zero 21 for this type of turbulent field.

This is definitely not the case in anisotropic turbulence

or, for that matter, turbulence with a "small" amount of

perceived anisotropy. Nevertheless, little research has

been done concerning the relationship between pressure and

velocity in an anisotropic turbulent field. This lack of

fundamental knowledge is partly due to the difficulty in the

measurement of dynamic pressure. For these reasons,

pressure will not be considered in the present analysis.

Furthermore, since the results which stem from this

assumption will be used only as rough estimates in the

turbulence simulation scheme presented later, the

neglected-pressure assumption is deemed an acceptable one
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for the purposes of this study. Hence, Equation (3.24) will

hereinafter serve as the governing equation for the

turbulent flow associated with low-altitude, sheared mean

winds.

The standard assumption that the total flow can be

considered as the linear combination of mean and fluctuating

components, viz.

m

U. _--_ U + u. , (3.25)

permits the continuity equation to be written as

_U. au

= 0 and _ = 0 (3.26 )

ax ax.
£ t

It is evident that the approximation made in Equation (3.25)

does not fully satisfy the nonlinear character of the

Navier-Stokes equation. Nonetheless, the assumption of a

linear combination of components has consistently been made

and will continue to be made until closed form solutions of

the full Navier-Stokes equation are found. ( For additional
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information on improved estimates to the component-

composition problem associated with nonlinear equations

consult Reference 25. )

Since Navier-Stokes is written for a single point in

space, a more general application of the governing equation

is necessary. For two points in a turbulent flow, denoted

P and P', the governing equation demands

a ( u um )
Point P : _ 0 (3.27)

x
m

and

'U'a ( U )
j

Point P' : _ 0 (3.28)
0

x
m

Subsequent substitution of Equations (3.25) and (3.26) yields
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Point P :

i oU. _u L _U.

a (u.u)
t m

_x
m

__ 0

(3.29)

and

Point P':

# I

_U _u'. _U

_, J _, J J
m _ + Um _ + u',,, x_-r-

l'_ m m

a (u'.u')
j m

+
_X'

m

0

(3.30)

The standard two-point velocity correlation technique is

invoked, and accordingly yields:
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_ u UmU J

]
_ ,Su. 0 U. u' 0 < ,U <u. _ > + _ <u .> + >

m J _X _X m j _X
m m J m

+

i m#

u i UUmlUUm,_, j j , O , ,

U <u. _,> + _r + ----n- .
m t OX _X _X

m m m

0

(3.31)

- a result derived in Appendix D. The interplay between

the underlying mean flow and the turbulence is evident upon

inspection of the bracketted "shear terms" of Equation

(3.31). Additionally, further consideration of the equation

suggests that turbulence superimposed upon a sheared mean

flow will have different statistical characteristics than

that of turbulence superimposed upon a constant mean flow.

Simplification of Equation (3.31) can be made defining
26

the following correlation tensors:

e 0

C j(r,t)~ _= <u_uj> and Si.mj(r,t) -- <u_umuj> , (3.32)

where the third-order tensor of Equation (3.28) is often
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referred to as the "turbulence self-interaction" tensor.

Furthermore, recognize that, in Equations (3.29) and (3.30),

the following conversion may be made: U a(.) = _' 8(.) =

m m

8(.)
-- a conversion which implies that turbulence

inhomogeneities are sensed as nonstationarities as the

aircraft translates through the turbulence 27'28. As shown in

previous work? the conversion found above also applies to an

aircraft-based axis system during flight through a

spatially, homogeneous sheared mean wind. Substitution of

the equations of (3.32) and introducing the

aforementioned conversion into Equation (3.31) eventually

produces

D Im

0 U a U
a j

C . + C - 2 S + C = 0 (3.33)
O t _J O x mj _ r tmj _ x' £m

m m m

( The " _ / O r "
m

of Equation (3.33) results from the fact

that r = x' - x from which _/_x = - 8/_r immediately

follows. ) Index contraction results in the more tractable

expression:
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C + C + --r C - 2 S = 0

m m m

(3.34)

Recall that the velocity correlation tensor can take the

general form, C m I + A , where I and A are the
_j Lj _j _j Lj

isotropic and anisotropic components, respectively. In

addition, the self-interaction tensor for the formulated

"small anisotropy" scenario can be shown to be identical to

that for isotropic turbulence by invoking O C / O r =
_J m

28
S To prove this, C is defined as in Equations (3.9) -

Ljm Lj

(3.11), and a term-by-term analysis similar to that in

Appendix C is effected. Since the aircraft senses a "small"

amount of anisotropy along the glide path, Equation (3.34)

essentially requires the solution of separate isotropic and

anisotropic dynamical problems 28 i.e.,

£) I.. - 2 S _ 0 (3.35)
Lmi.0 t _t D r

n_
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££) A + _ C + --r C _ 0 (3.36)
t _ 0 x m_ 0 x _

m

First, the basis for a scaling comparison - the

isotropic turbulence case - will be considered. Introducing

the "f" and "_" functional representations for the

2O
correlation tensors, viz.

o(r'f)
I = r-" (3.37)
££

r

and

s = o" (2r 4 ) r (3.38)
_m_ _ r m

into Equation (3.35) gives a result whose first integral is

the K_rm_n - Howarth equatio n for high Reynolds number

isotropic turbulence_ 6 i.e.,
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where k=_(r,t) is the single scalar function required to

specify third-order velocity product moments ( cf. Equation

(3.28) of Reference 20 ). Since the third-order moments are

not altered as a consequence of the self-preservation, it

follows that _(r,t) may also have such a time evolution,

i.e., _(r,t) _ _(_r) = _(r/A(t)) as illustrated in Figure

21. Incorporation of this feature into the integration of

the "modified" K_rm&n - Howarth equation of (3.39) results

in

I
I
I

co

d { } f [ 4 _(r/A) +
d t r

0

a h(r/A)I_r dr

(3.40)

I with A m _ f dr Integration of the right-hand side of

Equation (3.40) over the given range is mathematically

I permissible since _(r,t) _ @(r s) near the origin_ 0 Note
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Figure 21 :

r

" Self-Preserved " Behavior of the Single Function

Needed to Define the Turbulence Self-Interaction Tensor
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that a self-preserved _(r,t) provides a means for partially

closing the Navier-Stokes equation.

As an important aside, the assumption of self-preserved

functions will now be considered in more detail. Works of

yon K_rm_n_ 9 von K_rmln and Howarth_ 0 yon K_rm_n and Lin_ 1

and Dryden 32 have incorporated self-preserved functions for

the study of turbulent energy decay. Clearly, the

assumption is a mathematical contrivance. In the present

case, self preservation is a definite statement about the

third-order velocity correlation function - that function

which manifests due to the ensemble averaging inherent in

the two-point correlation, and which opens an otherwise

closed problem. In making the self-preservation claim, a

distinct approach is taken in order to solve the closure

problem. Exactly what is implied about the energy transfer

mechanism from the self-preservation assumption is quite

bold and specific: all turbulence length scales must decay

at the same rate. Since the decay of turbulence may be

physically interpreted as the manner in which energy is

transferred between large turbulent eddies and smaller ones,

self preservation intuitively seems unrealistic. In fact,

experimental evidence has indicated that said assumption is

only acceptable for large scale structures in the later

stages of decay_ 3- Consequently, care must be taken when

basing conclusions upon results derived from self-preserved

functions.

Further progress in solving Equation (3.40) is now made

by introducing the dummy variable, e m r/A(t). In doing so,

Equation (3.40) becomes
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d t
{ _2(t)A(t) } _ _ " Ck

(3.41)

where

00

I [ 4 _(e) + @ _(e)] de = constant (3.42)

0

I

I

I

Since _ is a negative-valued function_ 0 C is always a
k

negative number - a fact invoked later. Solution of

Equation (3.41) gives the time-dependence for the isotropic

integral scale, namely

t

C

A(t) _ ,k _ _s(t) dt (3.43)
(t)

o

I Introducing the power-law form for isotropic intensity 20
i.e., G2(t) = tn for n = ±1,±2, .... allows Equation (3.43)

to take the form
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A(t)

2 C n÷z

k t z
3n+ 2

2 n
(t)=t

n = _+I,_+2,... (3.44)

For the specific turbulence intensity, _2(t) = t -i ( a

common power-law approximation made in grid-induced

2O
turbulent decay studies ), the resulting time-dependent

integral scale may be found by consulting in Table 2.

To consider the anisotropic problem, gradients must

first be defined. The two steady-state, wind-shear profiles

chosen for analysis are illustrated in Figures 22a and 23a,

and will hereinafter be referred to as "Shear-Flow I" and

"Shear-Flow II," respectively. Note that both profiles have

a "head-to-tailwind swing" - a phenomenon frequently

observed in microburst encounters. The mean velocity for

( }( }Shear-Flow I is U = U(z), 0, 0 _= M1z, O, 0 as

shown in Figure 22b. Analysis of Shear-Flow II is

restricted to the two-dimensional case with

UL= U(x), O, W(z) and gradients of the form _ -
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= M - a consequence of mass conservation. ( See Figure
2

23b for a graphical interpretation of Shear-Flow I ).

Indeed, mass conservation for the two shear flows is

satisfied as shown below:

Shear-Flow I :
_ U. _ U _ V _ W

L
__-- + +

_ x _ x _ y _ z
t

- 0

= 0 + 0 + 0 = 0

and likewise,

Shear-Flow II :
8 U. 8U 8 V @W

= + + = 0

_ x, _ x 8 y 8 z

= M + 0 + -M = 0
2 2

The turbulent sheared mean wind of Shear-Flow II will now be

considered in detail. Incorporation of Shear-Flow II

characteristics into (3.36) yields
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a( alr I + b )

t
+ 2M2{ z( f_g )- (alrl + b ) } _ 0

(3.45)

The first integral in "r" of the differential equation found

immediately above yields

d ( _'AA )

d t
+ M G2A - 2M _ZAA _ 0 , (3.46)

Z 2

00

where _ ( a Ir I + b ) dr - G'AA(t) The solution of Equation
O

(3.46) gives the time-decay of the change in integral scale

due to anisotropy, namely

4^ (t)

t

2M t
- M e z | - 2M t

" J e 2 _2(t)A(t) dt (3.47)
2
(t)

0IX
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23
A similar analysis for Shear-Flow I has provided the following

differential equation for the anisotropic contribution to the

dynamical problem:

a f

-- [ alrj + b I -M _'_ r-- + M_ r_ z
_ t i _ r i

(f+2g)

r

0

(3.48)

whose first integral in "r" gives

d

d t [ _z(t)AA(t)I
- M Gz(t) _ A(t) _ 0 (3.49)

the solution of which is

A^(t)
M

2
(t)

I

t

I _2(t) A(t) dt

o

(3.50)
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As expected, the isotropic portion of the entire dynamical

problem remains unaltered when considering the two

individual flows ( cf. Equation (3.44) ). The resulting

AA's for both shear profiles are found in Table 3 for

G2(t)=t n and o2(t)=t -i , i.e., the general and specific

power-law approximations, respectively. Now, a method of

"scaling" the turbulence of a low-altitude wind shear with

respect to classical isotropic turbulence will be introduced

to facilitate interpretation of the results provided in

Tables 2 and 3.

The role played by anisotropic turbulence in a wind

shear encounter will be quantified in a correlation length

scale defined as L m A(t) + AA(t) ( Recall that as

integral scale increases in magnitude, randomness decreases,

while decreasing scale implies increased prognostication ).

It is clear that in order to scale with respect to isotropy

only the algebraic sign of AA is required. Also, comparison

of the decay rates of the sensed length scales of Table 3

shows that the anisotropic contribution grows or decays at a

faster rate than the isotropic component of the total

correlation length scale. Furthermore, inspection of

Equation (3.50) indicates that, as the aircraft penetrates

the headwind portion of Shear-Flow I, AA > 0 since M and
£

are negative in this phase of the flight ( cf. Figure 22a ).

Consequently, the turbulence sensed by the aircraft is less

random than that predicted by isotropic turbulence theory

since L = A + AA > A. Even more significant is the

tailwind phase of the wind shear encounter since it provides

AA < 0 - a more random turbulence field in comparison

with isotropy. A similar analysis of Equation (3.47) for

Shear-Flow II yields negative AA's on both sides of this
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wind shear, thus making it more unpredictableT Table 4

summarizes the significance of wind shear on the

aircraft-sensed turbulence length scale with respect to

isotropy. These turbulence characteristics peculiar to

low-altitude flight through turbulent wind shears, in

conjunction with the loss of aerodynamic lift, must be

accounted for in order to ensure enhanced realism in wind

shear flight simulations.

t Constants of integration have been neglected in

obtaining Equation (3.44) and Equation (3.47).
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CHAPTER

POWER SPECTRAL DENSITY AND APPLICATIONS

OF THE TURBULENCE MODEL



!

!
§ 4.1 PSD OF DOWNWAgH TURBULENCE AND AIRCRAFT REgPONSE

I
As noted in Chapter 2, the one-dimensional power

I spectral density ( psd ) function is a common way of

illustrating energy distribution versus frequency, and has

I been an immensely popular tool in both turbulence analyses

and simulations. Mathematically, it is the one-dimensional

l Fourier transform of the autocorrelation function. In
particular, the psd for the modelled turbulent downwash

i formulates as follows:

! o
-Lkr

I ,ww(t,k)=_! < w(x,t)w(x+r,t) > e dr

(4.1)

or

o0

_ww(t,k) = f

-00

-ckr

dr , (4.2)

m"

!

!

is the wave number ( or "spatial frequency"where k = -V-

since its units are rad/unit length ), c2=-I, and V is the

constant forward flight speed of the aircraft. The

"scaling" of the resulting psd manifests since
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co

_(t, _ ) =
-CO

-_r/V

_'(t) R(_r) e dr (4.3)

-I
With @ _= A(t) and @r _= e, Equation (4.3) takes the form

CO

-L_Ae/V

_A 2 f_ww(t,-v- ) = (t)A(t) R(O) e

-- CO

d8 (4.4)

It is therefore clear that if the normalized correlation

function, R, consists of separate isotropic and anisotropic

components, so too will its Fourier transform. The

isotropic contribution to the autocorrelation of Equation

(4.2) is defined by the Dryden exponential formulation_ 0

viz.,

-Irl/^(t)
f(r,t) =_ e

Hence, if the appropriate integration limits on the

anisotropic component are accounted for ( cf. Figure 20 ),

Equation (4.2) eventually integrates to
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_ww(t'_) = [ GzA
(I + _')" (_,

(4.5)

- a result derived in Appendix E. Equation (4.5) is the

psd sensed by the aircraft as it flies through the

microburst. Here _ _ eA/V is the non-dimensionalized wave

number, _ the isotropic intensity, A the longitudinal

correlation length ( integral scale )and AA the change in

integral scale due to the anisotropy induced by the presence

of the ground. Inspection of Equation (4.5) indicates the

power spectrum separates into

( t _ 1 + 3_ 2

_ww(t,_) m _'A (4.6)
(l + z),

and
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=, ¢_% I - COS(_)

§WW (t'_) -= 4_'At-:_ j _D z '
(4.7)

(_)

(_) (=)

where _ww(t,_) is the isotropic psd and _ww(t,_) is the

anisotropic psd.

<_>

Recognize that _ww(t,_) is the well-known Dryden psd.

Illustrated in Figure 24, the Dryden psd has long been used

in both high and low-altitude flight - the reason for

which Dryden's representation of isotropic turbulence is

frequently described as "garden variety" turbulence. The

Dryden spectrum, although slightly less realistic than the

von KGrm_n spectrum I0 in terms of spectral characteristics,

is an excellent approximation for isotropic turbulence
24

analyses. Furthermore, it is much less of a computational

burden than the von K_rmAn for simulation purposes - a

fact considered in greater detail in the following section.

Equation (4.7) is the anisotropic downwash psd

corresponding to low-altitude flight through sheared

turbulent winds in which a slight amount of anisotropy is

sensed. This previously unquantified parameter of

wind-shear turbulence will now be considered in terms of

aircraft response.

The effect of anisotropic turbulence on aircraft

response may be estimated from the standard input/output

relationship
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Here _ww(_) is the turbulence psd, _ (_) is the responseqq

psd, and H(_) is the frequency response of the airframe.

In a strict sense, this relation holds only if the effect of

the spatial structure of the turbulence field on the

response of the system is negligible. In other words, if

the length scale of the turbulence, A + AA, is large in

relation to the largest dimension of the airplane,

application of Equation (4.8) is justified - an acceptable

assumption in the present case since A + AA _ _ ( I000 ft ).

The components of Equation (4.8) will now be examined.

The total input power to the aircraft from the

surrounding downwash turbulence is

(t) (_)

lww = lww(t, _) + _ww(t, _)

- a linear combination of isotropic and anisotropic

psd's. Figure 25 illustrates, _&_ sensitivity analysis,

that the anisotropic power spectral density may play a

significant role in the total input power to the aircraft

received from the turbulent atmospheric environment. ( It

will be seen later that b/aA = 0.5 is a realistic value.
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The frequency response modulus chosen for this analysis

is approximated from the well-known Sears' function_ 4 and is

z d + u

H (u) I --- (4.9)

d + (_d + l)u + 2su zI

with d m 0.1811, u m reduced frequency m (_ c)/(2 V), and c

m chord length. Knowing that the non-dimensionalized wave

number is defined as _ m (_ A)/V , it immediately follows

that _/V = _/A. The expression for reduced frequency in

terms of the non-dimensionalized wave number is therefore

1 c

- ( __ ) _ (4.10)
2 A

Subsequent substitution of Equation (4.10) into the modulus

equation yields
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2

H(_) =
0.1811 + 0.5(c/A)_

0.1811 + 0.5(0.1811, + l)(c/A)_ u + 2_(0.5(c/A)_) 2

(4.11)

Substitution of Equation (4.11) into (4.8) yields an

approximation for the power spectrum of the random lift of

the aircraft. Implementation of the FORTRAN programs of

Appendix G provides an estimate of aircraft response with

regard to the anisotropy-defining parameters. An important

result of this method of study is illustrated in Figure 26:

for c/A = 0.01 ( e.g., chord _ I0 ft for A _ I000 ft ),

aircraft response is underestimated by isotropic theory over

the entire frequency range shown. Additionally, Figure 27

illustrates that the degree of anisotropy ( i.e., b/(aA) =

variable ) makes little difference in terms of response for

0 < _ < 2

The preceeding analysis has highlighted the distinct

advantage that the power spectral density representation has

over the autocorrelation function: that of a more meaningful

statement about the role that the anisotropy-defining

parameters ( "a" and "b" ) play in the estimation of the

total turbulent energy in a one-dimensional, low-altitude

down gust. The parameter "a" has been more well defined

than "b" since
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a = _)(_) --_ constant

for the scenerio in which the glide-slope path is maintained

during the turbulence encounter. Consequently, "b" plays

the more important role in terms of modelling the anisotropy

due to the presence of the boundary. From Figure 20, "b" is

related to the intensity by G2+b m (_+AG) 2, where AG is the

change in intensity due to the anisotropy. This expression

can be rewritten as

= 2_A_ (4.12)

I

I
2A_ _ 2 A_

I

I A more thorough evaluation of "b" will be made when

turbulence simulation is addressed later.

I

I
I

I

I
I

Another way to quantify the collective effect of the

anisotropy-defining parameters on the sensed power is to

introduce an "energy scaling factor" defined as

- 93 -



I

I

I
I

I
I
I

I
I

I

I

I
I

I
I

I
I

I

(a.)

_ww(t," )

A(t,_) _-- (t, (4.13)

_ww(t,_)

To analyze the scaling effect of AA/A in (4.13), allow

b/(aA) _ constant; typical values of G=5 ft/s, A=I000 ft,

V=225 ft/s and a=@(_)=O(3°)=O(0.052 rad) are chosen, and

AG/G is allowed to vary up to 0.5 (a feasible value for

wind-shear turbulence severity). Incorporating Equation

(4.12) gives b/(aA) = _(0.5). Figure 28 shows that, for

AA/A ranging from the isotropic condition, AA/A=0, to

AA/A=O.I, the energy scaling factor is as high as 35_ for

0 _ _ _ 2 ( 0 S _ _ 0.45 rad/s ) - a frequency range

which falls within that specified for the guidance and

control phases of an aircraft mission involving a wind

shear_ 5 Hence, the energy scaling factor has been used to

make an important point: realistic estimates of the energy

transfer associated with wind-shear turbulence demand that

anisotropy be accounted for in both turbulence models and

related flight simulations.

§ 4.2 METHODS OF" SIMULATING ATMOSPHERIC TURBULENCE

The role that flight simulators play in the training

process of both pilots and crew is an important one. Of

particular importance are the simulations involving aircraft

which are particularly sensitive to atmospheric turbulence.

In such cases, the turbulence may have serious implications
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with regard to ride quality and aircraft control.

Furthermore, the value of flight simulators is not only

practical but also economical, with studies showing that

flight simulators can be up to I0 times cheaper than actual

airborne flight training9 Realism in the turbulence

simulation corresponding to low-altitude flight is therefore

a research topic of great significance.

I There are many phenomonological issues which must be

considered when attempting to simulate atmospheric

I turbulence. One of the most important qualities is known as
"patchiness." Flight through seemingly continuous

i turbulence may contain sudden interjections of turbulent
activity followed by extended calm periods. It is this

so-called "element of surprise" which characterizes the

I "patchiness" of the atmospheric From a
turbulence_ 6

mathematical perspective, patches of relatively intense

I activity separated by extended periods of relative calm

cannot be perfectly represented by the Gaussian probability

I density function. Since the Gaussian pdf proves
unsatisfactory for the probabilistic estimation of large

gusts - those gusts most important in both ride quality

I and aircraft control - many simulation techniques have

been developed to account for the shortcomings of Gaussian

I distributions ( see Table ). A few of the basic535

simulation techniques presently used will now be considered.

I The most obvious method of producing realistic

turbulence for simulation is to record actual turbulence.

Unfortunately, this procedure has serious drawbacks. A

single recording of necessarily finite length may only be

useful in the simulation of a single event under similar

geometric and meteorological states for a finite period of

I

I
!
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Table 5 : A Review of Turbulence Simulations and Models

Mode I Key Features

I
I

I
I

I

I
I

I
I
I.

I
I

mmlsmm_smm_ms_Imlms_g

Dryden turbulence

yon Karman turbu-

lence

Ornstein-Uhlenbeck

turbulence

Etkin one dimen-

sional turbulence

power spectra

Versine gust

Lappe low-altitude
turbulence model

Multiple point
source turbulence

Holley-Bryson

random turbulence

shaping filters

University of

Washington non-
Gausslan

atmospheric tur-

bulence model

A convenient spectral form based on an exponential

autocorrelation function for the axial component.

A spectral form for which the autocorrelation func-

tion includes a finite microscale, thus the relative

proportion of spectral power at high frequencies

exceeds that of the Dryden.

A spectral form with first-order longitudinal and

transverse components.

The local turbulent velocity field is approximated

by a truncated Taylor series which yields uniform

and gradient components. High frequency spectral

components eliminated on the basis of aircraft size.

Based on Dryden form, but gradient spectra are non-

realizable unless simplified.

A discrete gust waveform.

Experimentally-obtained data of vertical gust spec-

tra, mean wind speed, and lapse rate were used to

develop a low-level turbulence model. The turbulence

spectra are presented for different types of terrain,

height, and meteorological conditions.

A two-dimensional gust field generated from two or

more noise sources having prescribed correlation

functions and located sparwlse or lengthwise on the
vehicle.

A matrix differential equation formulation of uniform

and gradient components including aircraft size

effects. Filter equation coefficients determined from

least square fit to multi-point-source-derived correla-

tion functions.

Non-Gaussian model using modified Bessel functions to

simulate the patchy characteristic of real-wor]d

turbulence. Spectral properties are Dryden and include

gust gradients.

Refer to Reference 35 for citations
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Model

Delft University

of Technology non-

Gaussian structure

of the simulated

turbulent environ-

ment

Royal Aeronautical
Establishment model

of non-Gaussian

turbulence

The Netherlands

National Aerospace

Laboratory model
of non-Gaussian

turbulence

University of

Virginia turbulence

model

Mil Standard

turbulence model

Indian Institute

of Science non-

stationary turbu-
lence model

FAA wind shear

models

ST1 wind shear

model

Key Features

Non-Gaussian model similar in form to the University

of Washington model, but uses the Hilbert transform

to model Intermittency as well as patchiness. Includes

University of Washington model features extended to

approximate transverse turbulence velocities and

gradients.

Non-Caussian turbulence model with a variable proba-

bility distribution function and a novel digital

filtering technique to simulate intermittencv.

Spectral form approximately yon Karman.

Similar to the Royal Aeronautical Establishment

model, but extended to include patchiness and

gust gradient components and transverse velocities.

Models patchiness by randomizing gust variance and

integral scale length of basic Dryden turbulence.

First order difference equation implementation of

turbulence filters based on 8785 Dryden turbulence

and refitted rolling gust intensity.

Nonstationary turbulence is obtained over finite

time-windows by modulating a Gaussian process with

either a deterministic or random process. The

result is patchy-like turbulence similar to the

University of Washington model except the time-

varying statistics of the turbulence are presented
for the deterministic modulating functions.

Three-dlmensional wind profiles for several weather

system types including fronts, thunderstorms, and

boundary layer. The profiles are available in table

form.

Time and space domain models of mean wind and wind

shear (ramp wave forms) are combined with MIL-F-8785C

Dryden turbulence to obtain the total atmospheric

disturbance. The magnitudes of the mean wind and

wind shear are evaluated in terms of the aircraft's

acceleration capabilities.

I

I
I
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I
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Model

Sinclair frontal

surface wind shear

model

MIL-F-8785B atmos-

pheric disturbance

model

MIL-F-8785C atmos-

pheric disturbance

model

ESDU atmospheric

turbulence

Boeing atmospheric
disturbance model

turbulence

Wasicko carrier

airwake model

Naval ship airwake
model

Vought airwake

model for DD-963

class ships

STI Wake vortex

encounter model

Key Features

A generic model of frontal surface wind shear

derived from a reduced-order from of Navier-

Stokes equations. Relatively simple to use and

can match the overall characteristics of measured

wind shears.

Intensities and scale lengths are functions of

altitude and use either Dryden on yon Karman

spectral forms or a one minus cosine discrete gust.

Also spectral descriptions of rotary gusts,

Same as 8785B with the addition of a logarithmic

planetary boundary layer wind, a vector shear,

and a Naval carrier airwake model.

Rather general, but contains comprehensive descrip-

tive data for turbulence intensity, spectra, and

probability density

A comprehensive model of atmospheric disturbances

that includes mean wind, wind shear, and random

turbulence. Turbulence is Gaussian and uses linear

filters that closely approximate the yon Karman

spectral form. Mean wind and turbulence intensity

are functions of meteorological parameters.

Includes mean wind profile, effect of ship motion,
and turbulence.

Includes free air turbulence filters plus steady,

periodic, and random components of airwake which

are functions of time and space.

Combined random and deterministic wind components

for free air and ship airwake regions. Based on

wind tunnel flow measurements.

A two-dimensional model of the flow-field due to

the wake vortex of an aircraft is presented. The

parameters of the flow-field model are weight, size,

and speed of the vortex-generating aircraft, and

distance and orientation of the vortex-encountering

aircraft. Strip theory is used to model the aero-

dynamics of the vortex-encountering aircraft.

I
I

I
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Model

lululslm_Ist_slww_s

Cambell and

Stanborne wind

shear and turbu-

lence model

Zhu and Etkin

microburst model

Key Features

Spatial model based on Joint airport weather studies

(JAWS) microburst data. Permits calculation of aero-

dynamic loads over body of aircraft.

Generic spatial model of microburst velocity compo-

nents based on potential flow singularity distribution

involving only three adjustable parameters.
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time. Recording hundreds of different turbulence encounters

may solve this problem but may present another - that of

economics. Even if specific time records are deemed to be

general enough to represent several other events, the

pilot-in-training would no doubt become too familar with the

characteristics of the turbulence encounter, and the

versatility and flexibility demanded of both the simulator

and pilot would accordingly be comprimised. Hence, such a

method is unsuitable for general-utility simulations.

The most common technique used to simulate atmoshperic

turbulence is the method of linearly-filtered, Gaussian

white noise. In this method, a wide-band white noise signal

is fed into a filter whose transfer function is such that

the output spectrum matches the desired turbulence spectrum

( see Figure 29 ). Inherent in such simulations - known

as "Monte Carlo" turbulence simulations - is the

flexibility absent from the aforementioned flight-recorded

turbulence method. This filtering technique, while being

extraordinarily easy to implement, does have a major

deficiency: should the filter be linear, the output is

necessarily Gaussian - a fact found to contradict

experimental evidence concerning the probabilistic nature of

turbulent winds_ 7

Many attempts have been made to "massage" the Gassian

signal into a non-Gaussian one. One of the methods is the

Modified Gaussian technique ( see Table 5 ). In this

method, it is hypothesized that the non-Gaussian patchiness

may be considered as the linear combination of two

components: one representing the intensity variations within

the turbulence patch itself, and the other characterizing

the time-dependent nature of the intensity_ 8 As illustrated

- I01 -

I



l

I
I

I

I
I
I

I

I
I

I

I
I

!.
I

I
I

I

I

White

Noise

Source

Figure 29

I Shaping
Filter

: Simulation o÷ Atmospheric

Linearly-Filtered

" Turbulence

Turbulence _

White Noise



I

l
!
I

I
I

I
I

I
I

I

!
I

I
I

I

!
I

in Figure 30, the Modified Gaussian tubulence method

involves a random variation of intensity u4_ a random number

generator. The signal is passed through a distribution

modifier. The result is then fed into a matched linear

filter which outputs the simulated turbulent gust velocity.

A similar procedure may be applied for the other components

of turbulent velocity since anisotropy demands different

component values of intensity. Note that the level of the

turbulence activity corresponding to each patch is dictated

by the magnitude of the mean intensity, while the

distribution modifier provides the time-dependent

intensity_ 8 In fact, the distribution modifier is patterned

after the pdf of the intensity. ( Some turbulence data

suggests the a truncated Gaussian distribution adequately

represents the distribtion of the intensity_ 8 )

A natural extension of the Modified Gaussian Model is

the method in which an integral scale modifier is also

included. Such a turbulence simulation scheme, depicted in

Figure 31, is known as the UVA Turbulence Model_ 9 ( Again,

refer to Table 5 and see "University of Virginia turbulence

model." )

In summary, the need for enhanced realism in flight

simulations has given rise to many different models and

simulation techniques concerning atmospheric turbulence.

The reason so many exist is that scientists and pilots alike

find it difficult to _uantify the "feel" of turbulence.

Some believe that nonstationarity ( or nonhomogeneity )

promotes realism 39. Other investigators have considered the
4O

non-Gaussian characteristics of atmospheric turbulence to

be the difference between simulation and reality while many

others believe that one-dimesional psd's will never fully

- 103 -



I

!

i
I

I
I
I

!
I

I

I
!
I

I
I

I
I

I
I

O' ---- O' mO' m O'
i. u V W

Random

Number

Generator

White

Noise

Source

Intensity

Distribution

Modifier

Shaping

Filter
r

Turbulent

Gust

Velocity

Figure 30 : Modified Gaussian Turbulence Simulation



I

I

I
I

I
I

I

I
I

I

I
I
i
I

I
I

I
I

Random

Number

Generator

(A)

White

Noise

Source

Random

Number

Generator
(B)

Figure 31 : UVA Gust Model

Intensity
Distribution

Modi÷ier

Shaping

Filter

A.

t

Scale

Distribution

Modifier

Turbulence Simulation

Turbulent

Gust

Velocity

I



I

I
I

I

I
I

i
I

I

I
I

I
I
I

I
i

I
I

I

incorporate the physical feel of true three-dimensional

hydrodynamic turbulence91 Still others maintain that the

aircraft point-mass assumption is too bold, andlthat

spanwise gust gradients across the airfoil must be included

in the rolling and yawing moments_ 2 In fact, it has even

been speculated that the "feel" of turbulence may be

primarily due to airframe vibration 43 - a characteristic

usually neglected in present flight simulators. This long

list indicates that evaluation criteria for flight

simulations are indeed quite subjective. For this reason,

simplicity and cost effectiveness will serve as the

governing factors in the following simulation considerations

for the "small anisotropy" turbulence model.
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@ 4-.3 A SINULATION TECHNIQUE FOR THE MODELLED TURBULENCE

The task at hand is to develop a method of simulating

the anisotropic turbulence modelled in Chapter 3. The

technique chosen is the linear-filtering method for an

output power spectrum matching that of Equation (4.5). A

simple schematic of typical isotropic turbulence simulations

is shown in Figure 32 in which the output of the shaping

filter matches either the Dryden or von KArm_n spectra. But

recall that classical isotropic turbulence falls short in

the estimation of the energy transfer associated with

low-altitude flight. Hence, it is proposed that the present

anisotropic turbulence model may be simulated as shown in

Figure 33. Here, it is assumed that the white noise sources

are independent, and that the matching ( shaping ) filters

are computationally realizable - the reason for which the

Dryden psd is preferred to the von KArm_n psd for the

isotropic portion of the simulation. In keeping with the

popular methodology associated with the filtering technique,

the nonstationary nature of the random process will first be

suppressed, and will then later be incorporated as in the

UVA simulation. The initial task is therefore to determine

the transfer functions of the corresponding shaping filters.

The isotropic, Dryden shaping filter for the downwash

turbulence is well known and takes the form 38
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Figure 32 : Method to Simulate Isotropic Turbulence
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[ 3 V ]112 s + (3)"12AHI(S) = _ Z_ _o A V z
(4.14)

[s,_]

where "s" is the Laplace variable• and "_o" is the constant

psd value of the white noise input.

Now, consider the contribution of the anisotropy.

Recall that the anisotropic psd is

_b , (4.15)
(-_X-)

Equation (4.15) may be rewritten as

ca, [ cob] 2_ww (_) - 2_'AA sinc . (4.16)
2 a V
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With frequency matching in mind, it is noted that the sinc

function may be considered as follows:

_ b e_

sinc _ sinc

2 a V 2 b

a V

(4.17)

Using this fact, it can be shown that the corresponding

frequency response function is the zeroth-order,

"catch-and-hold" filter_ 4 i.e.,

- s_

_ 1 - e

sinc _ H(s) = (4.18)
2 s

I I
I

" zeroth-order filter "

Upon inspection of Equation (4.17), it is evident that the

frequency content has been matched but the parameter 2G2AA

has not. To do so, the input/output relationship for

stationary random processes is used, viz.
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OUT

(s) = H(s)

IN

S----tO_

(s) (4.19)

In this case, Equation (4.19) becomes

(_)

_ww (s) = • (4.2o)

where _ is a matching factor introduced to account for the

" 2G2AA " term. Substitution of the frequency response

function for the zeroth-order hold into the input/output

relationship yields

2_ZAA sinc = D<a _* sinc _o(S)
2 a V 2
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which simplifies to

D<2 a V 2- _ constant scaling parameter (4.21)
_o

Consequently, the shaping filter for the modelled anisotropy

becomes

-S(a--_)

HA(S) = [ a V , ]i/, 1 - e (4.22)
_o s

In arriving at Equation (4.22), it was assumed that the

parameter b/(aV) varies "slowly with time" with respect to

the simuland's time-domain response ( see Figure 34 ). A

similar assumption is at the very root of the UVA turbulence

simulation in which the time-varying turbulence statistics

_(t) and A(t) are assumed constant over the current time

period, and then updated for the next.

With the UVA method in mind, a more explicit simulation

technique for the modelled downwash turbulence is

- 113 -
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illustrated in Figure 35. In this scheme, however, the

independent Gaussian white noise components ( n and n )
I A

are interrelated by the intensity and length statistics.

Again, the distribution modification scheme is invoked to

account for the time-dependent turbulence statistics. In

the aforementioned figure, note that the "sensitivity

variable" for the simulation is "b" since the approximation

a m O(_) _ constant is assumed to be an acceptable one for

simulation puposes. In order to approximate "b," Equation

(E.12) is used to give

bz = 2a_ZAA (4.23)

or

b = ( 2_" I a AA I ) (4.24)

It now becomes essential to provide a relationship between

AA and A ( see Figure 35 ). One estimate,
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AA =_ O ( _+ tA ) , (4.25)

results from the self-similarity concepts of Chapter 3 since

A(t) _ O(t I/2) and Z_A(t) _ O(t s/2) for 2 _ O( t-i )

The algebraic sign on " tA " in Equation (4.25) is dependent

upon the side of the wind shear being simulated. If the

self-similarity assumption is deemed too specific for

general-purpose simulation, another approximation such as

AA = • A (4.26)

with _ [] ( an accepted scaling constant) may be an

appropriate starting point.

As an aside, it should be noted that if the "slow

varying" assumption is accepted in the analog version of the

simulation, the same must hold for the digital simulation.

( One possible scheme is outlined in Figure 36. ) Although

digital simulation is not a goal of this study, note that

one obstacle will no doubt arise - that of the initial
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x(s) Y(s)

x(s) = H(s) X(s)

Inverse Laplace Transform

_ the z-transform

Difference Equations with

"Constant" Coefficients

Solve for Discete Time

Domain Representation

Figure 36 : Possible Digital Simulation Technique
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conditions required in the z transform and the resulting

transients due to non-zero initial conditions. A more

pertinent concern, though, is the estimate on the elusive

"b" - that single anisotropy-defining parameter which has

been left unspecified by turbulence modelling theory.

§ _.._. I:'STIMATION OF" "b" F'ROM SIMULATION CONCEPTS

At present, knowledge of the mathematical form of "b"

consists of

b _ 2o 'z
A o'

o'

(4.27)

and

b = = 2ao=AA (4.28)

from Equations (4.12) and (E.12), respectfully. Now,

consider the anisotropic turbulence input/output

relationship illustrated in Figure 33. This figure clearly

implies
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I/z -hs

[aVZ] [ 1 - e ]w,(s) = n,(s) , (4.29)
s

o

where h m b/(aV). The time-domain representation of

E_ation (4.29) is found _ the inverse Laplace transform,

i.e.,

i{ 1w (t) = a w,(s) (4.30)
A

The result of the transformation,

I/2

w(t,:[av]0
0

b/(aV)

n (t-_) d_

O

, (4.31)

is derived in Appendix H. It is in the "memory effect"

associated with the above definite integral from which an

estimate of "b" can be made. Since two-point theory demands
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that the length over which correlation exists is

appriximately one correlation length = A + AA m L

Figure 12 ), Equation (4.31) accordingly implies

( cf.

b

L _-~ V ( a---V- ) (4.32)

or

b ~_-- a L (4.33)

Since a = a(t) m @(_) , Equation (4.33) is yet another

equation relating the two parameters which define "small

anisotropy" in a low-altitude wind shear encounter.

§ 4..5 CONSIDERATION OF THE "HAZARD INDEX"

Other facets of the wind-shear research effort are

detection and avoidance. The primary objective in the

development of _ _ detection, warning, and avoidance

systems is the definition of an accepted and reliable hazard
45

index. Such a parameter has recently been defined as
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l_i l.i
F _< + , (4.34)

g V

where U is the total derivative of the horizontal wind

component, and W is the vertical wind component. The

inequality was derived upon consideration of the balance of

mechanical energy of an aircraft translating through an

accelerating, nonhomogeneous flow. Analysis has shown that

the hazard index may be physically interpreted as the loss

in excess thrust-to-weight ratio due to the flow

characteristics of the shear_ 5 Combinations of horizontal

and vertical winds peculiar to a wind shear encounter likely

fall outside of the index-bracketted diamond of Figure 3795

Such a state indicates that a threatening condition exists

with respect to aircraft performance. The hazard index,

commonly referred to as the "F-Factor," is made an equality

by imposing a hazard threshold, F - a value based upon
O

aircraft performance data.

Once a specified threshold value is exceeded, a warning

is either annunciated or displayed to the pilot. The

possibility of non-hazardous turbulence inducing such a

threshold exceedence is incontestably of paramount concern.

Horizontal and vertical turbulence models must adequately

represent low-altitude encounters to ensure that the hazard

alert does not become a nuisance alert.

Analysis of the turbulence-nuisance question has, up to
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the present, only involved isotropic ( Dryden )

approximations_ 6- But recall that the sensitivity analysis

performed above _ the energy scaling factor indicated that

such estimates are non-conservative for the environments for

which the hazard index is derived. Clearly, the turbulence

model of Chapter 3 is a prime candidate to quantify the

vertical wind component of Equation (4.34). ( The

"substantial derivative" of the horizontal wind in the

F-Factor is currently being investigated_ 7- and will not be

addressed here. )

The role of the turbulence model for "small

anisotropy," as it applies to Equation (4.34), may be better

exemplified by considering the variance of the F-Factor ,

viz.

2
0' = 0 ,2

F
+ ¢z (4.35)

w
u m

g v

which may be rewitten as
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z _ I _. cko + --
_r g u V ww

I --CO --CO

CO

(eL)d_ + _ww d_

-co

I
i

I Substitution of Equations (4.6) and (4.7) into
results in

!

I z 1 _w 2 a AA= T_'_ d* + T- _÷ _

| -co

(4.36),

Invoking Equations (4.33) and (4.28) for bz and AA

resectively, yields

i
I

I

2
G
F { }1 _ a

_ d_ + w + --Lg 6 v v
--O0
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Since the nature of _ is well documented in the

literature36 38 w• Equation (4.38) is an important one since

both "a" and "V" are well defined by the present turbulence

model. Consequently, the bracketted term of Equation (4.38)

is that portion of the total intensity of the F-Factor

corresponding to the modelled anisotropy. Substitution of

typical values, viz. 2 = 15 ft/s, a =_ 0.052 ft/s 2, and

V = 225 ft/s provides

1
2 = -- _ d_ + ( 1 + 0.00023 L ) (4.39)

_F g
"CO

As is usually the case in turbulence modelling, the length

scale ( e.g., "L" ) is unspecified. Since a perfectly

acceptable value of L is I000 ft, the "0.00023 L" term is

significant in comparison to unity in the turbulence model's.

contribution to Equation (4.39).

Clearly, these results indicate that anisotropy must be

accounted for in the turbulence model used in the evaulation

of a hazard index. It is important to note that Equation

(4.38) demands that, if the aircraft flies along a

horizontal path, the anisotropic turbulence model

contributes no more than that due to isotropy alone - a

fact which is in agreement with the "small anisotropy"

turbulence theory. At present• it is not known how

significant the vertical wind component is in comparison to
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the horizontal ( cf. Equations (4.34) and (4.35) ), but it

has become evident upon inspection of Equation (4.39) that a

thumb rule for length scale with altitude is needed for £n

$£tu hazard index estimation. Such rules of thumb are

commonly used for estimating G and A ( or "L" ) in flight

simulations_ 8 Once this "rule" is obtained and an

acceptable performance-sensitive value for the variance of

the F-Factor is imposed ( presently specified 0.12 for large

commercial aircraft )_6- a major step toward the minimization

of nuisance alerts will have been made.
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i

!

I

I
I
I
I

,I

I
I

I

I
l

I
I

I
I

l

§ 5.1 CONCLUSIONS

Chapter 1 introduced the potential dangers of wind

shears and their corresponding turbulence, and it defined

the principle objectives of the present study: I) to model

the statistical characteristics of the turbulence perceived

by an aircraft translating through low-altitude, sheared

mean winds, 2) to study the effect of these characteristics

on aircraft response, and 3) to consider a method of

simulating the modelled turbulence. From the basic premise

that near-ground, wind-shear turbulence is anisotropic, the

"small anisotropy" turbulence model of Chapter 3 was

developed. The downwash autocorrelation function

immediately followed. The anisotropic autocorrelation

function was then converted into a power spectrum - a

popular frequency domain statisic used in the simulation of

atmospheric turbulence. Use of the power spectral density

approach highlighted the fact that realistic estimates of

the energy transfer associated with wind-shear turbulence

demand that anisotropy must be accounted for in both

turbulence models and related flight simulations. Chapter 4

then illustrated the relative ease in which the turbulence

model could be simulated. Furthermore, a state-of-the-art

application of the above turbulence model in wind-shear

detection was introduced u&_ the "F-Factor." Consequently,

the goals defined at the onset of the present research

effort were met and possibly surpassed.
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§ 5.2 RECONNENDATIONS FOR FURTHER WORK

The preceeding work has resulted in many questions

which may be considered in follow-up studies:

How well does the autocorrelation function for

"small anisotropy" compare with that actually

perceived by an aircraft flying through

low-altitude, sheared winds?

Exactly how should the analog simulation technique

of Chapter 4 be effected digitally?

Additionally, how well will the digitally

reconstructed power spectral density compare with

that produced from actual flight recordings?

Is the "slow-varying parameter" method used to

account for time ( space ) dependent turbulence

statistics acceptable? Moreover, since b/(aV) was

assumed slow varying and "b" was recognized as the

more sensitive time-dependent term, could the

self-similarity based result,
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d t

1 -i/2 3 £/2
= a _(- t + --t

2 2

serve as a criterion from which "b" could be

adjusted for more realistic time-dependent

simulations?

It therefore becomes clear that the validity of the

assumptions made in both the turbulence model and the

proposed simulation technique can only be addressed fully

when in-flight recordings of the downwash turbulence during

a wind-shear encounter are madeT It is in this rather blunt

statement that the motivation for "best approximations"

becomes apparent. Existing high-altitude wind shear data

should first be considered. It is hoped that one possible

"approximation" will ultimately consist of incorporating the

aforementioned turbulence model into real simulations. Here

the pilots may provide comments on the realism of the

simulated turbulence that no theoretical analysis could

reveal.

T Reference 48 may provide insight on both this data and the

"rule of thumb" relating integral scale and altitude

called for in Section 4.5.
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APPENDIX A KINEMATICS OF Ax I SYPIMETRIC TURBULENCE

V I A ]_NVAR I ANTS

Kinematics, in the study of turbulence, consists of

setting up velocity correlations at two ( or more )

arbitrary points in the turbulent fluid. The fundamental

problem is: what is the correlation between the component

of the velocity u in an arbitrary direction at point P and

that of u' in an arbitrary direction at point P'? The

arbitrary directions are defined by their respective

direction cosines a and b . Isotropy demands that, for an
L L

arbitrary translation or rotation of the configuration

governed by P P' a and b ( cf. Figure A1 and consider
' ' L' L

the geometry as a rigid body ), the velocity correlation

must remain unchanged. At most, the correlation can depend

on the position of the points, r = x' - x , the
t L

components of the direction cosines, a and b_ , and time ,

t Theodore von KArmAn and Leslie Howarth A1 proved that

such a correlation obeys the transformation laws of a

second-order tensor and may be expressed as

, = < u (x,t) u (x+r,t) > _= C
u uj _ j . . _j

(A.I)
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u a , b : Unit vectors

Figure A1 : Defining Geometry o_ a Two-Point Velocity

Correlation in a Turbulent Flow
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The overscript bar indicates a time average. With isotropy

( and therefore homogeneity ) in mind, the correlation

tensor may be written as

C
_j

m
w

U U ' U V ' U W '

V U ' V V ' V W '

W U ' W V ' W W '

m GZR. , (A. 2)
_j

where R is known as the fundamental correlation
_j

coefficient. Thus, von K_rm_n and Howarth showed that the

two-point velocity correlation for arbitrary rotations about

the x coordinates in an isotropic turbulence field results
t

in a second-order tensor.

H. P. Robertson A2 approached the same kinematical

problem from the perspective of invariant theory. In terms

of invariants, the kinematical problem for homogeneous,

isotropic turbulence becomes: determine the most general

function R(r~,~a,b) = R j. _jab" which is a invariant under

arbitrary and permissible rotations of the geometry-defining

vector set { r, a, and b } For axisymmetricturbulence,~

the preferred direction, with an orientation defined by k ,

must be accounted for in the geometric invariance.
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Consequently, the general function must be expanded to

R(r,a,b,k)~~ . , and must depend only upon the fundamental

invariants. For the case of axisymmetric turbulence, the

fundamental invariants are all the possible scalar products

formed by any two of the vectors 5' 9' b, and k. To

illustrate, first consider the linear isotropic form:

Z (r,a) _= L a , (A.3)

where Z is a linear, first-order correlation function which

can depend at most on the invariants r.r = r 2, a.a = I, and

r. a = r a To be linear and homogeneous in its a

components, the linear isotropic function generalizes to

Z (r,a) m L(r 2) r a (A.4)

From (A.3), Equation (A.4) implies

L = L(r') r (A.5)
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Note that the arbitrary function, L , defines the linear

first-order isotropic form, and is an even function of "r."

Now, consider the linear axisymmetric form.

governing general expression is

The

Z (r, a,k) = L a L (A.6)

A general algebraic form for L is sought with Z depending,

at most, on the following invariants:

r.r = r 2, a.a = I, k,k = I, r.a _= r a , r.k - rk, a.k _= 1
....... t t ~ L _ ~ ~

while being linear and homogeneous in a .
L

(A.6) rewrites as

Thus, Equation

Z (r a,k) = M (r s r k ) (r.a) +
~s~ • L i. ~ ~

N (r s, r k ) (k.a)

(A.7)
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which requires

L = M (r 2, r.k.__) r£ + N (r 2, r.k.__) k_ (A.8)

Here "M" and "N" are arbitrary scalar functions governing

the linear, axisymmetric form, Z(r,a,k). With this and
N

Equation (A.I) in mind, the axisymmetric bilinear form can

be considered as

E(r,a,b,k) = C a b
~ , _j _ j

(A.9)

Equation (A.9) may be interpretted as
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C C C
2_ 22 2g

C C C
g£ g2 g9

-q

b
£

I

2

I
b i

g ,

(A. i0)

Invariant theory demands the general form of C depends at
_J

most on the following invariants:

r.r = rz, a.a = I, b.b = i, k.k = I, r.a =_ r a,
~ .... t t

r.b = r b, r.k --_--cgr, a.k _= i, a.b = I, and b.k = b k

and that C is homogeneous in a b The most general
i.j _ j

invariant expression for _(r,a,b,k) is therefore
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_(r,a,b,k) = A(r 2, _r) (r,a)(r,b) + B(r 2, cgr) (a,b) +

C(r z, /_r) (a.k) (b.k)+

D(r_ _r) (r,b) (b,k) +

E(r_ _r) (r,a) (b,k) (A.II)

Since _(r,a,b,k)~ = C a b , Equation (A. II) requires
_j _ j

C ab = A(r z, _r) rra b
i.j i.j i.j i. j

c(r; _r)

D(r 2, /_r)

E(r 2, /gr)

+ B(r_ _r) 6 a b +
_j _ j

k k a b +
_. j i, j

k r ab +
j i. j

k r a b , (A. 12)
j L i. j

where 6 is the Kronecker delta tensor. From Equation
_j

(A.12), the resulting second-order axisymmetric tensor is
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This expression for the C j can now be used to evaluate the

specific tensor entries of Equation (A.IO) by substituting

specific i,j values.

It is now noted that E(r,. • • ) = E(-r,0 • 0 ) by

inspection of Figure A2. The upshot is that arbitrary

functions A, B, and C are even functions of r2 and (_r) 2 ,

or

I

D(-r) = -E(r) and E(-r) = -D(r) (A.14)

I
I

I

a fact which implies "D" and "E" are identical and odd

functions of _r_ 3 It immediately follows that Equation

(A.13) can be rewritten as

- A9 -
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Figure A2 : Geometric Argument that the Correlation Between

P and P is the Same As that Between P and P
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- All -

C k.k
j + D ( k.rL j + k rJ _ ) }

(A.15)
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APPENDIX B EVALUATION OF THE ARBITRARY FUNCTIONS

FOR _SOTROPIC TURBULENCE

Recall that the tensor defining the correlation between

two points in an isotropic turbulence field is given by

C (r,t) m < u (x,t) u (x+r,t) > (B.I)

From invariant theory, Equation (B.I) may also be written as

+ B 6.. , (B.2)
C j (r,t) = A r rj _J

where "A" and "B" are arbitrary scalar functions.

The standard method by which isotropic turbulence is

generated in a laboratory environment is shown in Figure BI.

Intuition and experimental evidence indicate that turbulent

velocity measurements taken along the centerline most likely

approximate the characteristics of isotropic turbulence.
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Figure B1 : Method Used to Produce Turbulence in a Wind Tunnel
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Consequently, for the measurement geometry of Figure B2, component

correlation functions evaluated from Equation (B.I) take the form

Cuu(r,t) = C (r,t) = A r2 + B (B.3)~ _i ~

Cvv(r,t). = C2, (r,t)~ = 0 + B (B.4)

and

Cww(r,t). = C,, (r,t)~ = 0 + B (B.5)

Introducing definitions for the single longitudinal

correlation and the two transverse correlations into

Equations (B.3), (B.4), and (B.5) provides

A r2 + B =_ 2 f (B.6)

B m 2 g (B.7)

B m z g (B.8)

- B3 -
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Figure B2 : Conventions for Evaluation o÷ Turbulence

Correlation Functions
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where "f" is the longitudinal correlation function for

isotropic turbulence, and "g" the transverse correlation

function.

Algebraic manipulation of Equations (B.6) and (B.7)

yields the desired scalar equations for "A" and "B," viz.

f - g } 2
A = 2 and B = g

r2

(B.9)
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APPENDIX C DERIVATION OF THE DIVERGENCE OF CLj

Recall that the second-order tensor for axisymmetric

turbulence is written as follows :

C = Ar r + B6.. + Ck.k. + Dk.r + Ek r
i.j t j tj _. j t j J _.

(c.I)

Since D = E for correlation tensors with indicial symmetry, the

divergence of Equation (C.l) with respect to rj becomes

- + B6.. + Ck.k + D(k.r + k r )
Arrj Lj _ j _ j j

rj _ rj

(C.2)

The invariants which constitute the functional dependence of

the arbitrary scalar functions A through D are defined as

- Cl -
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r.r = r r = r2 and r.k = r k. _= {gr
~ £ £ ~ ~ _ t

Also of use in the evaluation of Equation (C.2) is

since

O _ O (constant)

Or O r

= 0

Equation (C.4) may be further expanded to

O r O k.

-[_? +[,
Or r Or r

£

r.

r 2

- C2 -
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since

4) r

r
L

(r r )*/z

4) (rnr" )

1

2
(rnrn)-ilz [

r
n

4) r.
L

1

2
(r r n)-I/z [ 6 rmt n

or

4) r r
_ L

r
4) r

L

and, since 4) _ / 4) r. = O,

k. _ r

r rz

- C3 -
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Now, Equation(C.2) will be considered in separate components.

The "A" part of Equation (C.2):

_ r 8 r
a A _ J

( A
r

) - r + A r + A r
rj _ rj _ r J _ a r

rj _ rj j j

A

- r r + A&.. r + A r 6..
L j _j j L jJ

r
J

rj _A k /_ rj j _ A

]+[--- ?
r _ r r r* a8

+ 4Ar

rj rj a A k. r /_ r rj j j j a A

+[ - 1
r _ r r r 2 0/_

+ 4 A r
L

a A a A

r + [/_ - _ 1
_ r _/9

+

4A} r

- C4 -

r
L

i



I

I

I
I

I
I
I

I
I

I

I
I
I
I

I

I
I

I

or

( Arrj ) = r

a rj O r

The "B" part of Equation (C.2):

O O B

O r tj _J O r
j J

rj O B [ k

J
- +

r a r r

rj O B k

J

- 6 +
Ljr O r r

or

- C5 -

/9 r
J

r 2

r
L

6..
O,q "J

[9 r 6..
j _J

r 2

(C.9)



!

!

!

I _ {_( B 6tj ) = - -
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aB _ aB }
r rz OB

I

I
I

I
I

I

I
I

I
I

i
I

I

I

{

The "C" part of Equation (C.2):
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r
J

or

J

( Ck.k. ) =
J

C

k,k.
Jr

J

i rj 8 Cr 8 r

8 C 8k.

k,k, + C k
_ r _ J _ r

j J

+ Ck.
j

kj /9 rj 8 C ]

r r* dl9 _ J

k k, /9 r k.
J J J J+[

r r 2

19 r 0 C 1 /9z r

{ +[ -r _ r r r2

J

r
J

( Ck.k, ) =
J

C

at9

C

_f9

19 + k.
_ r r _19 L
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I The "D" part of Equation (C.2).
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!

4) ( Dk. r + Dk.r )
j j t

4) r
J

I 4) D 4) k%

= { -- k rj + D -

I _ rj _ _ rj

r + DA.
j

I { 4) D 4) k.

J
+ k r + D

4) r J _ 4) r

r + Dk.
j

I

I
I

I

I

I

{.o }{.ok r + 3Dk. +
J _ 4) r

4) rj j

J J
+

r 4) r r r2

k r
j

+ Dk.

4) r
J

4) r
J

I

I

4) r

4) r
J

}

.o]k r +
4)_ i. j

}

kj /9 rj 4) D ] 1
[ ? kr +DA.

r r 2 4)_ J _ L
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I which algebraically reduces to

I

I

_ ( Dk£ r________j+D__kj r_____) = _ r -_ D 1
I _ rj _ _ r +4D k_+

I _ _ D r 1-/92 a D

I _ /9-_-_--+ [-----f--I --_ _" } r (C.12)

I

I Combining r and k_ terms from Equations (C.9) - (C.12)
yields

I

| ,c f _ _ _ _ _ _
_- =_r -- ÷4A+_ - -- -

I _ rj [ _ r _ r _ r r z T _ }

_ D 1 - /9a _ D

+ /_ + [ 3 ] r +

i _B _c [i__.I _c _D+_ + +r
r a_ 8 r r a/9 _ r

+ 4D }
(c.i3)
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- a result which matches Equation (2.13) of Reference Cl

for D = E.

It is important to note that if d = 0 and

k = { O, O, 0 } , Equation (C.13) readily becomes the

C2
governing isotropic equation.

For conciseness, Equation (C.13) will now be written as

49 r
J

=( )r + ( ..... s ..... )x

(c.14)

Since K_rmAn and Howarth c2 have shown that C is a
_j

solenoidal tensor ( i.e., one with a vanishing divergence

with respect to one of its indicies ), Equation (C.14)

becomes

( R ..... )r. = 0 (c.15)

and

- ClO -
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( S )k. = 0
L

(C.16)

since r. can take on an infinite number of values for

constant values of r, _, and k. Equation (C.15) thereby
L

provides constraints on the mathematical relationships

between the arbitrary functions which make up the

correlation tensor for axisymmetric turbulence.
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APPENDIX D Two-PoiNT VELOCITV CORRELATION THEORV

The two-point velocity correlation technique is a

method in which the statistical relationship between

velocities at two points in a turbulent fluid is defined

( reference Figure A1 ). As stated in the text, the

governing equation for the turbulent flow is the

Navier-Stokes equation. Steady-state, high Reynolds number

turbulence with ignored pressure gradients at point P ( cf.

Figure A1 ) is therefore governed by

_(u u )
£ m

X
m

=_ 0 . (D.I)

Since the total flow may be considered to be composed of the

linear combination of an underlying mean and a superimposed

fluctuating component, it readily follows that Equation

(D.I) can be rewritten as

{ }(U + u ) ( U + u )
X L _ m m

Tn

--__ 0 (D.2)

where ]-rT denotes a mean value of (.).

(D.2) then gives

Expanding Equation
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OX L Lr. r.L Lm

0 (D.3)

Invoking mass conservation in the term-by-term analysis of

Equation (D.3) yields

(D.4)

0 OU 0 u_ _ _ u.

U m J m ma x [ _ x _ x _ x
m _q m _q

(D.5)

_U. 0u oF

Um m 4_ X _" m _ X,_ X 0 X
m m m m

(D.6)

Equation (D.3) can accordingly be restated as

- D2 -
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I

U _ + U _ + U

m _ X m _ X m _ X
m m m

o(uu )
£ m+

X
m

0

(D.7)

#

Navier-Stokes is then applied at point P :

# •

a(u u )
j m

0

,_ X
m

0 (D.8)

where (..)' indicates a reference to the primed point in the

correlation. Similarly, the expanded version of Equation

(D.8) becomes

Q

a u a u ' # u' o ( u 'u '
_, j _, j j j m
U + U + u' + _ 0

m 0 X ' _ _ X ' m _ X ' _ X '
m m m

(D.9)
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The method of two-point correlation is implemented by

multiplying Equation (D.7) by the jth velocity component at

Q

point P' ( i.e., uj ), and stochastic averaging the result.

Likewise, Equation (D.9) is multiplied by u£, and stochastic

averaged. Then the results of the separate operations are

added.

The first step in the correlation technique yields

_U. _u. aU

< U ' U _ > _" < U ' U _ > + < U ' U

j m _x j m _x j m _x
m m m

> +

, a(uu)
<u _m > _ 0

J aX
m

(D. I0)

Each stochastic-ave:caged term of Equation (D.10) is then

considered individually, and the concept of a "mean"

variable is invoked:

m m

_U _U.
- U< U' U _ > - _ < U' > _= 0

j m _x m _x J
D9 ?_

(D.I1)
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u a u
< u' U L > = U < u' t

J " 0 x m J a x
m m

m

¢_U _U.
< U' U _ > ---- _ < U' U

j m Ox Ox J "
m

(D.12)

, a(uu )
< U t m > = < UU U'

J Ox _x _'J
m m

(D. 13)

Equation (D.7) accordingly simplifies to

> (D.14)

m

a u _U. 0
U < U' £ > + _ < U' U > +

m J _ x O x j m _ x
m m m

< UU U' > _ 0.
i. m j

(D.15)

Similarly, the equation for the primed point becomes
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m !

aU' au' au
J , J J

-< U U > + < U > + < u U '

L m _ X ' L m _ X ' L m _ X
m m m

> +

_ ( U 'U ' )
j m

< u > -__ 0
L

8 X '
m

(D.16)

which, like the unprimed equation, can be rewritten:

m i

8u' aU
J J _

_ p

U <u > + <u u ' > + <u 'u ' u > _ 0

m L OX' aX' Lm _X' j m L
m m m

(D .17)

Addition of Equations (D.15) and (D.17) yields the desired

result:
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_ u _U.
< U , i, > 4" I. < U' U > 4" < U U U S > "I"

m J _ x _ x j m _ x _ m j
_rl m m

,9 U ' _ U '
J J-- I

U < u > + < uu ' > + < u'u ' u. > _ 0

m t 0 X ' _ X ' t m 0 x ' j m
m m m

(D.18)

- a description of the interaction between the velocity

at one point with another in a turbulent flow field.
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APPENDIX E DERIVATION OF THE TURBULENT DOWNWASH PSD

The one-dimensional psd for the modelled downwash

turbulence is defined as

00

-Lkr

_ww(t,k) = _ < w(x,t)w(x+r,t) > e dr
(E.I)

Substituting the autocorrelation of Equation (3.17) yields

co

_ww(t, k) =

--OO

-_kr

dr (E.2)

Noting the even nature of the autocorrelation gives

_ww(t,k) = 2

co

f
-CO

oZg + air I + b } cos(kr) dr
(E.3)
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From inspection of (E.3), it follows that

00

lWW (t,k) _= 2 ff2g

--CO

cos(kr) dr

and

_ww (t,k) - 2

co

I { a,r, + b } cos(kr)dr

-CO

i) The Isotropic Psd

First, the isotropic psd will be considered. A

functional representation of the transverse correlation

function, g, is required. Appendix F provides such a

relation, viz.

g= f

1 @ f

+ -- r

2 8 r

- E2 -

(E.4)

(E.5)
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The longitudinal correlation function, f, can be reasonably

approximated by the Dryden exponential form

-Irl /A(t)
f(r,t) _--_" e

Use of this formulation in Equation (E.6), and subsequent

substitution of the result into Equation (E.4) yields

'_' f -{ri/A_WW (t,k) = 2a z e cos(kr) dr

0

2

r e cos(kr) dr
A

o

(E.7)

r

Letting e = --
A

as

and m kA , allows (E.7) to be rewritten
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Oo oo

_WW (t,_) = 2_ZA _ e cos(_e) de - _ZA J _ e cos(_e) d8

o o

(E.8)

Equation (E.8) integrates to

[i][i_.,]WW (t'k) = 2oZA z - c'ZA
1 + _ ( 1 + z )z

(E.9)

Combining the terms of (E.9) yields the Dryden psd, namely

(L ) 1 + 3_ z

_ww(t,_) -- _zA (E.10)
(I + z)z

- E4 -



ii) The Anisotropic Psd

Consideration of the anisotropic psd first requires the

definition:

o0

2

I ( alrl + b ) dr = G
O

(E.11)

It follows from Figure E1 -

of Equation (E.II) - that

the graphical interpretation

5 2

2
_A(t)-

2 a

(E. 12)

Consequently, the anisotropic psd takes the form

m 0o

_WW (t,_) m 2 - a r + b cos A!
dr (E.13)
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Figure E1 : Definition of _ from the Anisotropic Component

of the Downwash Autocorrelation Function , C33
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since the anisotropic correlation is an even function of

domain [ 0 _< r _< b/a }. Multiplying Equation (E.13) by

A/A, and recalling that _ = kA and 8 = r/A gives

(_)

_ww (t,n) = 2A

b
aX

I {- a r + b } cos(_O)de

O

b

=2^II
O

- aAe cos(.e) de

b

a---K

+f
0

b cos(_e) de

b

= "2aAZ I

o

e cos(_e) de +

2Ab

b

o

Equation (E.14) integrates by parts to

- E7 -
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= -2 aA z
e

-- sin(_e )

b

a--_

o

b
a--_

-f
o

I ]--sin (_e) de

2Ab _b
+ sin --

aA

or

2aA" 1 - cos(_)

2 MD 2
(E.15)

Multiplication of Equation (E.15)by _" _ _L-_-J/L_-_-J"
yields
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(o.)

_ww (t,_)
m

2b z

a

I - cos(_)
(E.16)

which, with Equation (E.12), gives

_ww (t,_)

2 (2a_'A)

a

I - cos(_)

which can be rewritten as

(_) i - cos(_)
(E.17)

- the time-dependent anisotropic power spectral density

the downwash turbulence sensed by the aircraft in low-

altitude flight through a wind shear.

of
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APPENDIX F DERIVATION OF f & g RELATIONSHIP

Recall that

C (r,t) = A(r,t) r r + B(r,t) 6..
_j ~ L j ~ _J

(F.I)

and that isotropy demands symmetry in the indices of the

second-order correlation tensor. Consequently, continuity

imposes

C j a C j
= = 0

_ r _ r
j

(F.2)

Substitution of Equation (F.I) into Equation (F.2) yields

@ ( A r rj ) 0 ( B 6.,.j )

+ = 0

8 r _ r.

(F.3)

Equation (F.3) will now be considered in components.

the "A" part will be considered. The chain rule of

differentiation demands

First,

- F1 -
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_(Arr )
j

8 r
t

8 A _ r.
t

rr + A

8 r _ J @ r

8 A

4) r

8 A

8 r

r + A r
j

rr + A 6.. r + A r 6..

rr + 3Ar
_j J

_ r 8A ] r.r,
@ r _ r _ J

r 8 A ] rrr _ r L j

r z _ A

- F2 -
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+ A r
J

+ 4A r
J

+ 4 A r
J

4 A r
J

r
J

r
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or

8(Arr )
_j

r
r

A

r

Similarly, for the "B" part:

8(B6..) _B
_J

r. _J _ r
L

8 r
r

r _B
£

r
8 r

..

_J

or

- F3 -
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_ ( B6_j ) 1 _B

@ r r _ r
£

r
J

(F.5)

Hence, Equation (F.3) rewrites as

_ A 1 8 B

{4A + r + } r._ r r _ r J

= 0 (F.6)

Since Equation (F.6) must be satisfied for any arbitrary

values of "r," it follows that

8A 1 8B

4 A + r + = 0

_ r r 8 r

(F.7)

Furthermore, work done in Appendix B has shown the

following:
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a r.

z
o ( f- g )

r 2

and B = 2g

therefore Equation (F.7) becomes

4 2 {G ( f - g )
+ r --

r2 _ r I +

1

r r

= O.

(F.S)

Collecting terms and differentiating Equation (F.8) yields

the desired result, viz.

g = f +

r _ f

2 8 r

(F.9)
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APPENDIX G FORTRAN PROORAM8 FOR PSD ANALYSIS

'_8
t

WEAL RATIO,PI,PARAM,INC,K,DtA,IC,DELTA,F,ITR,ATR,TOT,G

INTEGER I,J,ANSWER

CHARACTER*Ib FILE I, FILE 2, FILE 3

* AIRCRAFT RESPONSE POWER SPECTRUMS AND COMPONENTS *

• MASTER'S THESIS SUPPLEMENT •

. FOR NASA - LANGLEY _ESEARCH *

. TONY R. LAITURI •

. **** PROGRAM DESCRIPTION *** •

* FOR VARYING NON-DIMENSIONAL WAVE NUMBER. THE POWER *

* SPECTRAL _ESPONSE OF AN AIRCRAFT IS CALCULATED. m

• TME uSER ENTERS _llta lamOda/lamD_a, 0/(a*lamOda),AND *

* A REASONABLE c/lamDda RATIO CORRESPONDING TO AIRCRAFT •

* SIZE. FURTHERMORE, THE wAVE NUMBER RESULTS AND TOTAL *

* RESULTS WILL BE RLACED IN DATA FILES FOR PLOTTING. *

• ALSO. T_IS PROGRAM UTILIZES A MORE GENERAL FORM OF THE m

* SEARS' FUNCTION TO ENSURE ACCURATE MODULUS VALUES OVER •

* THE ENTIRE RANGE OF wAVE NUMBERS. *

PRINT HEADER TO PROGRAM

WRITE(*,*) '
wRITE(.,m) ,m•****t.•_t***_***•.m.m.•****••***t•m••***tt_'

WRITE(•,*) 'POWER SPECTRAL DENSITY ANALYSIS OF WZ_sD-SHEAR

wRITE(*,m) '
WRITE(•,•) ' IS0, ANISO, AND TOTAL RESPONSE

wRITE(*,*) '
wRITE(*,*) TONY R. LAITURI NASA RESEARCH

wRITE!*,*) ***********************************************

QUERY THE PROGRAM uSE_

_RITE(•,*) '

_RITE_t,*) 'PLEASE ENTER KAPPA, TOT OUTPUT FILE NAME

_EAD(•.Q8) FILE l

_ITE(m,m) ' '

_RITE(*,*) PLEASE KAPPA, [SO RESPONSE OUTPUT FILE NAME'

READ(m,OS) FILE 2

wRITE(•,*_ ' '
wRITE(•,*) 'PLEASE ENTER KAPPA,AN[S0 _ESPONSE OUTPUT FILE NAME

_EAD(*,O8) FI_E 3

wRITE(e,*)

_ORMAT(A)

,3PEN(aI,F[_=C[LE l. STATUS = NEw';

3PEN(S2,F[LE=FILE 2, STATUS = 'NEW')

,3PEN(a3,:!LE=P[LE 3, STAT_S = NEW' )

ORIGINAL PAGE IS

OF POOR QUALITY
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lO

ORIGINAL PAGE I8

OF POOR QUALITY,

wRITE(.,m) , .

wRITE**,*) PLEASE ENTER BIA*IS'

REa_(*,*) PARAM

WRITE(*,*)

WRITE(*,_ 'PLEASE ENTER O IS/IS'

#EAD(*.*J RATIO

wRITE(*,*) '

wRITE(*,*i PLEASE ENTER C/IS RATIO'

READ(*,*) G

wRITE(*,*) _ '

PI=3.1#159265_

MAIN PROGRAM

WRITE(*,*)

WRITE(*,*) 'FOR RATIO = ',RATIO

WRITE(*,*) 'FOR b/alS = ,PARAM

WRITE(*,*) 'FOR C/IS = ,G

WRITE(t,*) **********************************'

WRITE(*,*) '

WRITE(*,*) _ KAPPA DELTA ISOTROPlC ANISOTROPIC TOTAL

wRITE(*,*)' RESPONSE RESPONSE RESP'

wRITE(*,*)'- .................................................. '

wRITE(*,*)' '

DO i0, I=I,50

K=I*O.I

O=K*PARAM

A=I.O - COS(D)

IC=(1.0÷_*K**2.)I((I.÷K**2.)**2.)

DELTA=4.0*RATIO*A/(D**2.*IC)

Z=O.I811

F=(Z÷O.5*G*K)/(Z÷(O.?8W_7*G*K)÷(I.5708*G**2.*K**2.))

ITR=F*IC

ATR=F*DELTA*IC

TOT=ITR_ATR

WRITE(*,IS) K,DELTA,ITR,ATR,TOT

FORMAT(Fb.I,3X,EIO.4,3X,EIO.W,3X,EIO.6,3X,EIO.4)

WRITE TO DATA FILES

WRITE(81,*) K,TOT

WRITE(82,*) K,ITR

WRITE(83,*) K,ATR

CONTINUE

WRITE(*,*) '

wRITE(*,*) 'PROGRAM TERMINATED'

END
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90

* MASTERS THESIS SuPRLEMEN _ *

• F_R NASA - LANGLEY RESEARC_ *

• TON_ R. LAITUNI •

• •**** PROGRAM DE_CRI_TION •**•* *

• THIS PROGRAM GENERATES POWER S_ECT_AL VALUES •

* F0R THE ISOTROPIC, ANISOTROPIC, AND THEIR SUM. •

* T_ESE VALUES ARE PRINTED OUT FOR VALJES _F •

* KAPPA (THE NONDIMENSIONALIZED wAvE NUMBER) *

* RANGING FROM 0.I TO 5.0 THE OUTPUT OF WHICH *

* BATCHED TO FILES DESIGNATED BY THE USER FOR *

• _ATE_ uSE _PLOTTING). *

REAL RATIO,K,IS0,ANIS0,SUM,PARAM,DENOM

INTEGER I,VALUE

CHARACTER*Ib FILE I. CILE 2, FILE 3

WRITE(*,*)

WRITE(*,*)

WRITE(*,*)

WRITE(*,*)

wRITE(*,*)

WRITE(*,*)

WRITE(*,*)

POWER SPECTRAL ANALYSIS PROGRAM FOR'

NASA-LANGLEY RESEARCH. T.R. LAITURI

QUERY THE uSER

WRITE(*,*)

WRITE(*,*) PLEASE ENTER KAPPA-IS0 PSD OUTPUT FILE

READ(*,2) FILE I

wRITE(*,*)

WRITE(*,*) 'PLEASE ENTER KAPPA-ANISQ PSD 3uTPuT FILE'

READ(*,2) FILE 2

_RITE(*,*) ' '

WRITE(*,*) 'PLEASE ENTER KAPmA-SUM PSD 0L'=UT FILE

READ_*,2) FILE 3

FORMAT(A)

0PEN(?I.FILE=FILE 1, STATUS = 'NEW')

0PEN(?2,FILE=FILE 2, STATUS = 'NEW')

OPEN(73,FILE=FILE 3, STATUS = 'NE_' )

WRITE(*,*) '

WRITE(*,*) 'PLEASE DELTA LAMBDA/LAMBDA RATIO'

READ(*,*) RATIO

W_ITE(*.*)

_RITE(*,*)

WRITE(*_*) FOR DELTA LAMDA / LAMBDA = ',RATZO

wRITE(*,*) F0R bI(a*LAMBDA) : ',PARAM

D0 10, I:_,50

K=I*0,/O

OENOM = KiPARAM

IS0 = (l.'3.eK**2.)/((l. _K*.2.0)*.2.0)

_NIS0 = _.,RATIO*(_.-C_S(KePARAM)I/((KePARAM)•*2.0)

SUM : ISO _ ANISO

CHECK=_ARAM*K

_RITE TO DATA FILES

_RITE(71,*) K,ISO

_RITE(?2.*) K,AN:S0

wRITEi73,*) K._M

CONTINUE

END O£ P.OOR QUALITY
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APPENDIX H DERIVATION OF EQUATION ( 4..31 )

The input/output relationship for the anisotropic

contribution to the entire downwash simulation is

w (s) = H (s) n(s)A A
(H.I)

Since H has been previously determined to be
A

I/= -S (b/(aV))

H (s)= [ a V= ] 1 - ea _ s
O

(H.2)

the expression for the anisotropic component of the downwash

turbulence is

I/= -hs

w (t) = nA(s)
a _ s

O

, (H.3)

- H1 -
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where h = b/(aV) and _ is the inverse Laplace transform

operator. With the following definitions:

_(s) _=

-hs
1 - e

S

inverse Laplace transform _ l(t)

and

_(s) m n (s) _ inverse Laplace transform _ m(t)
A

Equation (H.3) takes the form

w. (t) = [ _a V"
o

I/2

] { }

- H2 -
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(H.6)
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HI
Equation (H.6) can accordingly be rewritten as

i/2 t

[av]W (t) = 1(7) m(t-7) d7

o
0

(H.7)

In order to determine "i," consider the following

mathematical relation H2

-hs

I I-'t1-eI(h,t-t ) e o for t
o hs o

>_ 0 (H.8)

Here I(h,t-t ) is the unit finite impulse function and "t"
O

is the onset of the impulse. Incorporating this fact into

the present anaysis provides

- H3 -
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z(t) = _ L(s)

: E _ I(h, t-t °

: h I(h,t-t )
O

= h I(h,t) fort= 0
O

Consequently, Equation (H.9) yields

l(t=r) = h I(h,T)

Equation (H.10) permits (H.7) to take the form

- H4 -
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i/2 t

[av'] SWA(t ) = h I(h,T) m(t-'r) dr (H.11)

0
0

Considering the mathematical nature of the white noise

source and invoking the fact that the product "h I(h,r)"

equals unity over the range 0 S 7 S h ( cf. Figure HI ) ,

allows Equation (H.II) to be written as

i/z h

sW (t) = nA(t-7 ) d7 (H.12)

A _o
O

- H5 -
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Figure H1 : Unit Finite Impulse Function with t
0

T
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